mwifiex/mxm_wifiex/wlan_src/mapp/uaputl/uaputl.c
Fugang Duan 5fc6a71423 mxm_wifiex: update nxp mxm_wifiex sdk
The MxM wifi driver is merged from below repo and applied some
patches for block and build issues.
ssh://git@bitbucket.sw.nxp.com/wcswrel/
rel-nxp-wifi-fp92-bt-fp85-linux-android-mxm4x17169-mgpl.git

The commit is to update the license to GPL v2.

Signed-off-by: Fugang Duan <fugang.duan@nxp.com>
2020-04-26 10:53:08 +08:00

14528 lines
390 KiB
C

/** @file uaputl.c
*
* @brief Program to send AP commands to the driver/firmware of the uAP
* driver.
*
*
* Copyright 2014-2020 NXP
*
* This software file (the File) is distributed by NXP
* under the terms of the GNU General Public License Version 2, June 1991
* (the License). You may use, redistribute and/or modify the File in
* accordance with the terms and conditions of the License, a copy of which
* is available by writing to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
* worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
*
* THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
* IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
* ARE EXPRESSLY DISCLAIMED. The License provides additional details about
* this warranty disclaimer.
*
*/
/****************************************************************************
Change log:
03/01/08: Initial creation
****************************************************************************/
/****************************************************************************
Header files
****************************************************************************/
#include <stdarg.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <stdio.h>
#include <getopt.h>
#include <netinet/in.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <linux/if.h>
#include <sys/ioctl.h>
#include <errno.h>
#include "uaputl.h"
#include "uapcmd.h"
/****************************************************************************
Definitions
****************************************************************************/
/** Default debug level */
int debug_level = MSG_NONE;
/** Enable or disable debug outputs */
#define DEBUG 1
/** Convert character to integer */
#define CHAR2INT(x) (((x) >= 'A') ? ((x) - 'A' + 10) : ((x) - '0'))
/** Supported stream modes */
#define HT_STREAM_MODE_1X1 0x11
#define HT_STREAM_MODE_2X2 0x22
static int get_bss_config(t_u8 *buf);
/****************************************************************************
Global variables
****************************************************************************/
/** Device name */
static char dev_name[IFNAMSIZ + 1];
/** Option for cmd */
struct option cmd_options[] = {
{"help", 0, 0, 'h'},
{0, 0, 0, 0}
};
/** Flag to check if custom IE is present in sys_config response from FW */
int custom_ie_present = 0;
/** Flag to check if max mgmt IE is printed in sys_config response from FW */
int max_mgmt_ie_print = 0;
/** Flag to bypass re-route path */
int uap_ioctl_no_reroute = 0;
/****************************************************************************
Local functions
****************************************************************************/
/**
* @brief Convert char to hex integer
*
* @param chr Char
* @return Hex integer
*/
unsigned char
hexc2bin(char chr)
{
if (chr >= '0' && chr <= '9')
chr -= '0';
else if (chr >= 'A' && chr <= 'F')
chr -= ('A' - 10);
else if (chr >= 'a' && chr <= 'f')
chr -= ('a' - 10);
return chr;
}
/**
* @brief Check protocol is valid or not
*
* @param protocol Protocol
*
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_protocol_valid(int protocol)
{
int ret = UAP_FAILURE;
switch (protocol) {
case PROTOCOL_NO_SECURITY:
case PROTOCOL_STATIC_WEP:
case PROTOCOL_WPA:
case PROTOCOL_WPA2:
case PROTOCOL_WPA2_MIXED:
case PROTOCOL_WPA3_SAE:
ret = UAP_SUCCESS;
break;
default:
printf("ERR: Invalid Protocol: %d\n", protocol);
break;
}
return ret;
}
/**
* @brief Function to check valid rate
*
*
* @param rate Rate to verify
*
* return UAP_SUCCESS or UAP_FAILURE
**/
int
is_rate_valid(int rate)
{
int ret = UAP_SUCCESS;
switch (rate) {
case 2:
case 4:
case 11:
case 13:
case 22:
case 12:
case 18:
case 24:
case 48:
case 72:
case 96:
case 108:
case 36:
break;
default:
ret = UAP_FAILURE;
break;
}
return ret;
}
/**
* @brief Check for mandatory rates
*
*
* 2, 4, 11, 22 must be present
*
* 6 12 and 24 must be present for ofdm
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_FAILURE or UAP_SUCCESS
*
*/
static int
check_mandatory_rates(int argc, char **argv)
{
int i;
int tmp;
t_u32 rate_bitmap = 0;
int cck_enable = 0;
int ofdm_enable = 0;
#define BITMAP_RATE_1M 0x01
#define BITMAP_RATE_2M 0x02
#define BITMAP_RATE_5_5M 0x04
#define BITMAP_RATE_11M 0x8
#define B_RATE_MANDATORY 0x0f
#define BITMAP_RATE_6M 0x10
#define BITMAP_RATE_12M 0x20
#define BITMAP_RATE_24M 0x40
#define G_RATE_MANDATORY 0x70
for (i = 0; i < argc; i++) {
tmp = (A2HEXDECIMAL(argv[i]) & ~BASIC_RATE_SET_BIT);
switch (tmp) {
case 2:
cck_enable = 1;
rate_bitmap |= BITMAP_RATE_1M;
break;
case 4:
cck_enable = 1;
rate_bitmap |= BITMAP_RATE_2M;
break;
case 11:
cck_enable = 1;
rate_bitmap |= BITMAP_RATE_5_5M;
break;
case 22:
cck_enable = 1;
rate_bitmap |= BITMAP_RATE_11M;
break;
case 12:
ofdm_enable = 1;
rate_bitmap |= BITMAP_RATE_6M;
break;
case 24:
ofdm_enable = 1;
rate_bitmap |= BITMAP_RATE_12M;
break;
case 48:
ofdm_enable = 1;
rate_bitmap |= BITMAP_RATE_24M;
break;
case 18:
case 36:
case 72:
case 96:
case 108:
ofdm_enable = 1;
break;
}
}
#ifdef WIFI_DIRECT_SUPPORT
if (strncmp(dev_name, "wfd", 3))
#endif
if ((rate_bitmap & B_RATE_MANDATORY) != B_RATE_MANDATORY) {
if (cck_enable) {
printf("Basic Rates 2, 4, 11 and 22 (500K units) \n" "must be present in basic or non-basic rates\n");
return UAP_FAILURE;
}
}
if (ofdm_enable &&
((rate_bitmap & G_RATE_MANDATORY) != G_RATE_MANDATORY)) {
printf("OFDM Rates 12, 24 and 48 ( 500Kb units)\n"
"must be present in basic or non-basic rates\n");
return UAP_FAILURE;
}
return UAP_SUCCESS;
}
/**
* @brief Convert string to hex integer
*
* @param s A pointer string buffer
* @return Hex integer
*/
unsigned int
a2hex(char *s)
{
unsigned int val = 0;
if (!strncasecmp("0x", s, 2)) {
s += 2;
}
while (*s && isxdigit(*s)) {
val = (val << 4) + hexc2bin(*s++);
}
return val;
}
/**
* @brief Dump hex data
*
* @param prompt A pointer prompt buffer
* @param p A pointer to data buffer
* @param len The len of data buffer
* @param delim Delim char
* @return None
*/
void
hexdump_data(char *prompt, void *p, int len, char delim)
{
int i;
unsigned char *s = p;
if (prompt) {
printf("%s: len=%d\n", prompt, (int)len);
}
for (i = 0; i < len; i++) {
if (i != len - 1)
printf("%02x%c", *s++, delim);
else
printf("%02x\n", *s);
if ((i + 1) % 16 == 0)
printf("\n");
}
printf("\n");
}
#if DEBUG
/**
* @brief Conditional printf
*
* @param level Severity level of the message
* @param fmt Printf format string, followed by optional arguments
*/
void
uap_printf(int level, char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (level <= debug_level) {
vprintf(fmt, ap);
}
va_end(ap);
}
/**
* @brief Dump hex data
*
* @param prompt A pointer prompt buffer
* @param p A pointer to data buffer
* @param len The len of data buffer
* @param delim Delim char
* @return None
*/
void
hexdump(char *prompt, void *p, int len, char delim)
{
if (debug_level < MSG_ALL)
return;
hexdump_data(prompt, p, len, delim);
}
#endif
/**
* @brief Hex to number
*
* @param c Hex value
* @return Integer value or -1
*/
int
hex2num(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
if (c >= 'A' && c <= 'F')
return c - 'A' + 10;
return -1;
}
/**
* @brief Show usage information for the sys_info command
*
* $return N/A
*/
void
print_sys_info_usage(void)
{
printf("\nUsage : sys_info\n");
return;
}
/**
* @brief Get Max sta num from firmware
*
* @return max number of stations
*/
int
get_max_sta_num_supported(t_u16 *max_sta_num_supported)
{
apcmdbuf_sys_configure *cmd_buf = NULL;
tlvbuf_max_sta_num *tlv = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
/* Initialize the command length */
cmd_len = sizeof(apcmdbuf_sys_configure) + sizeof(tlvbuf_max_sta_num);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_max_sta_num *)(buffer + sizeof(apcmdbuf_sys_configure));
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
tlv->tag = MRVL_MAX_STA_CNT_TLV_ID;
tlv->length = 4;
cmd_buf->action = ACTION_GET;
endian_convert_tlv_header_out(tlv);
tlv->max_sta_num_configured =
uap_cpu_to_le16(tlv->max_sta_num_configured);
tlv->max_sta_num_supported =
uap_cpu_to_le16(tlv->max_sta_num_supported);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
endian_convert_tlv_header_in(tlv);
tlv->max_sta_num_configured =
uap_le16_to_cpu(tlv->max_sta_num_configured);
tlv->max_sta_num_supported =
uap_le16_to_cpu(tlv->max_sta_num_supported);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if ((cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) ||
(tlv->tag != MRVL_MAX_STA_CNT_TLV_ID)) {
printf("ERR:Corrupted response! cmd_code=%x, Tlv->tag=%x\n", cmd_buf->cmd_code, tlv->tag);
free(buffer);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR:Could not get max station number!\n");
ret = UAP_FAILURE;
} else {
if (tlv->length == 4) {
*max_sta_num_supported =
tlv->max_sta_num_supported;
} else {
*max_sta_num_supported = MAX_STA_COUNT;
}
}
} else {
printf("ERR:Command sending failed!\n");
}
if (buffer)
free(buffer);
return ret;
}
/**
* @brief Parse domain name for domain_code
*
* @param dom_name Domain name
* @return domain_code / UAP_FAILURE
*/
static t_u8
parse_domain_name(char *domain_name)
{
t_u8 domain_code = UAP_FAILURE;
if (strstr(domain_name, "DOMAIN_CODE_")) {
domain_name += sizeof("DOMAIN_CODE_") - 1;
if (!(strncmp(domain_name, "FCC", sizeof("FCC") - 1)))
domain_code = DOMAIN_CODE_FCC;
else if (!(strcmp(domain_name, "ETSI")))
domain_code = DOMAIN_CODE_ETSI;
else if (!(strcmp(domain_name, "MKK")))
domain_code = DOMAIN_CODE_MKK;
else if (!(strcmp(domain_name, "IN")))
domain_code = DOMAIN_CODE_IN;
else if (!(strcmp(domain_name, "MY")))
domain_code = DOMAIN_CODE_MY;
}
return domain_code;
}
/**
* @brief Parse domain file for country information
*
* @param country Country name
* @param band Band Info. 0x01 : B band, 0x02 : G band, 0x04 : A band.
* @param sub_bands Band information
* @param pdomain_code Pointer to receive domain_code
* @return number of band/ UAP_FAILURE
*/
t_u8
parse_domain_file(char *country, int band, ieeetypes_subband_set_t *sub_bands,
t_u8 *pdomain_code)
{
FILE *fp;
char str[64];
char domain_name[64];
int cflag = 0;
int dflag = 0;
int found = 0;
int skip = 0;
int j = -1, reset_j = 0;
t_u8 no_of_sub_band = 0;
char *strp = NULL;
int ret = 0;
fp = fopen("config/80211d_domain.conf", "r");
if (fp == NULL) {
printf("File opening Error\n");
return UAP_FAILURE;
}
/**
* Search specific domain name
*/
memset(domain_name, 0, sizeof(domain_name));
memset(str, 0, 64);
while (!feof(fp)) {
ret = fscanf(fp, "%63s", str);
if (ret <= 0)
break;
if (cflag) {
strncpy(domain_name, str, sizeof(domain_name) - 1);
cflag = 0;
}
if (!strcmp(str, "COUNTRY:")) {
/** Store next string to domain_name */
cflag = 1;
}
if (!strcmp(str, country)) {
/** Country is matched ;)*/
found = 1;
break;
}
}
if (!found) {
printf("No match found for Country = %s in the 80211d_domain.conf \n", country);
fclose(fp);
found = 0;
return UAP_FAILURE;
}
/**
* Search domain specific information
*/
while (!feof(fp)) {
ret = fscanf(fp, "%63s", str);
if (ret <= 0)
break;
if (feof(fp)
) {
break;
}
if (dflag && !strcmp(str, "DOMAIN:")) {
if ((band & BAND_A) == 0)
break;
/* parse next domain */
cflag = 0;
dflag = 0;
j = -1;
reset_j = 0;
}
if (dflag) {
j++;
if (strchr(str, ','))
reset_j = 1;
strp = strtok(str, ", ");
if (strp == NULL) {
if (reset_j) {
j = -1;
reset_j = 0;
}
continue;
} else {
strncpy(str, strp, (sizeof(str) - 1));
}
if (IS_HEX_OR_DIGIT(str) == UAP_FAILURE) {
printf("ERR: Only Number values are allowed\n");
fclose(fp);
return UAP_FAILURE;
}
switch (j) {
case 0:
sub_bands[no_of_sub_band].first_chan =
(t_u8)A2HEXDECIMAL(str);
break;
case 1:
sub_bands[no_of_sub_band].no_of_chan =
(t_u8)A2HEXDECIMAL(str);
break;
case 2:
sub_bands[no_of_sub_band++].max_tx_pwr =
(t_u8)A2HEXDECIMAL(str);
break;
default:
printf("ERR: Incorrect 80211d_domain.conf file\n");
fclose(fp);
return UAP_FAILURE;
}
if (reset_j) {
j = -1;
reset_j = 0;
}
}
if (cflag && !strcmp(str, domain_name)) {
/* Followed will be the band details */
cflag = 0;
if (band & (BAND_B | BAND_G) || skip)
dflag = 1;
else
skip = 1;
}
if (!dflag && !strcmp(str, "DOMAIN:")) {
cflag = 1;
}
}
fclose(fp);
if (pdomain_code && no_of_sub_band && (band & BAND_A)) {
*pdomain_code = parse_domain_name(domain_name);
}
return (no_of_sub_band);
}
/**
*
* @brief Set/Get SNMP MIB
*
* @param action 0-GET 1-SET
* @param oid Oid
* @param size Size of oid value
* @param oid_buf Oid value
* @return UAP_FAILURE or UAP_SUCCESS
*
*/
int
sg_snmp_mib(t_u16 action, t_u16 oid, t_u16 size, t_u8 *oid_buf)
{
apcmdbuf_snmp_mib *cmd_buf = NULL;
tlvbuf_header *tlv = NULL;
int ret = UAP_FAILURE;
t_u8 *buf = NULL;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
t_u16 cmd_len;
int i;
cmd_len = sizeof(apcmdbuf_snmp_mib) + sizeof(tlvbuf_header) + size;
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return ret;
}
memset(buf, 0, buf_len);
/* Locate Headers */
cmd_buf = (apcmdbuf_snmp_mib *)buf;
tlv = (tlvbuf_header *)(buf + sizeof(apcmdbuf_snmp_mib));
cmd_buf->size = buf_len - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->cmd_code = HostCmd_SNMP_MIB;
tlv->type = uap_cpu_to_le16(oid);
tlv->len = uap_cpu_to_le16(size);
for (i = 0; action && (i < size); i++) {
tlv->data[i] = oid_buf[i];
}
cmd_buf->action = uap_cpu_to_le16(action);
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
if (!action) {
/** Relocate the headers */
tlv = (tlvbuf_header *)((t_u8 *)cmd_buf +
sizeof
(apcmdbuf_snmp_mib));
for (i = 0;
i < MIN(uap_le16_to_cpu(tlv->len), size);
i++) {
oid_buf[i] = tlv->data[i];
}
}
ret = UAP_SUCCESS;
} else {
printf("ERR:Command Response incorrect!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief Creates a sys_info request and sends to the driver
*
* Usage: "sys_info"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sys_info(int argc, char *argv[])
{
apcmdbuf_sys_info_request *cmd_buf = NULL;
apcmdbuf_sys_info_response *response_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
int opt;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sys_info_usage();
return UAP_FAILURE;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 0) {
printf("ERR:Too many arguments.\n");
print_sys_info_usage();
return UAP_FAILURE;
}
/* Alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_len = sizeof(apcmdbuf_sys_info_request);
cmd_buf = (apcmdbuf_sys_info_request *)buf;
response_buf = (apcmdbuf_sys_info_response *)buf;
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_INFO;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (response_buf->cmd_code !=
(APCMD_SYS_INFO | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response!\n");
free(buf);
return UAP_FAILURE;
}
/* Print response */
if (response_buf->result == CMD_SUCCESS) {
printf("System information = %s\n",
response_buf->sys_info);
} else {
printf("ERR:Could not retrieve system information!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief Show usage information for deepsleep command
*
* $return N/A
*/
void
print_deepsleep_usage(void)
{
printf("\nUsage : deepsleep [MODE][IDLE_TIME]");
printf("\nOptions: MODE : 0 - Disable auto deep sleep mode");
printf("\n 1 - Enable auto deep sleep mode");
printf("\n IDLE_TIME: Idle time in milliseconds, default value is 100 ms");
printf("\n empty - get auto deep sleep mode\n");
return;
}
/**
* @brief Creates deepsleep request and send to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_deepsleep(int argc, char *argv[])
{
int opt;
deep_sleep_para param;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_deepsleep_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (argc > 2) {
printf("ERR:wrong arguments. Only support 2 arguments\n");
print_deepsleep_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_DEEP_SLEEP;
if (argc) {
if (argc >= 1) {
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
((atoi(argv[0]) < 0) || (atoi(argv[0]) > 1))) {
printf("ERR: Only Number values are allowed\n");
print_deepsleep_usage();
return UAP_FAILURE;
}
}
param.action = 1;
param.deep_sleep = (t_u16)A2HEXDECIMAL(argv[0]);
param.idle_time = 0;
if (argc == 2) {
if (IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) {
printf("ERR: Only Number values are allowed\n");
print_deepsleep_usage();
return UAP_FAILURE;
}
param.idle_time = (t_u16)A2HEXDECIMAL(argv[1]);
}
} else {
param.action = 0;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
if (argc)
printf("ERR: deep sleep must be disabled before changing idle time\n");
else {
perror("");
printf("ERR:deep sleep failed\n");
}
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
if (param.deep_sleep == 1) {
printf("deep sleep mode: enabled\n");
printf("idle time = %dms\n", param.idle_time);
} else {
printf("deep sleep mode: disabled\n");
}
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Configure Band Steering
*
* Usage: band_steering_cfg state block_2g_prb_req max_btm_req_allowed
*
* State 0 or 1
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_band_steering(int argc, char *argv[])
{
int opt;
band_steer_para param;
struct ifreq ifr;
t_s32 sockfd;
t_u8 state = 0;
t_u8 block2gPrbReq = 0;
t_u8 maxBtmReqAllowed = 0;
t_u8 i;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
printf("\nUsage: band_steering_cfg <state 0/1> <block_2g_prb_req> <max_btm_req_allowed>\n");
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (!(argc == 0 || argc == 2 || argc == 4 || argc == 6)) {
printf("ERR:wrong arguments.\n");
return UAP_FAILURE;
}
param.subcmd = UAP_BAND_STEER;
if (argc) {
if (strcmp(argv[0], "state") &&
strcmp(argv[0], "block_2g_prb_req") &&
strcmp(argv[0], "max_btm_req_allowed")) {
printf("ERR: Incorrect input. Either state, block_2g_prb_req or max_btm_req_allowed is needed.\n");
return UAP_FAILURE;
}
/** SET */
for (i = 0; i < argc; i = i + 2) {
if (strcmp(argv[i], "state") == 0) {
param.action += ACT_SET_STATE;
if (strcmp(argv[i + 1], "0") == 0) {
state = 0;
} else if (strcmp(argv[i + 1], "1") == 0) {
state = 1;
} else {
printf("ERR: Invalid State value.");
return UAP_FAILURE;
}
} else if (strcmp(argv[i], "block_2g_prb_req") == 0) {
param.action += ACT_SET_BLOCK_2G_PRB_REQ;
block2gPrbReq = atoi(argv[i + 1]);
if (block2gPrbReq < 0 || block2gPrbReq > 15) {
printf("ERR: Invalid block_2g_prb_req value. Enter value between 0 and 15");
return UAP_FAILURE;
}
} else if (strcmp(argv[i], "max_btm_req_allowed") == 0) {
param.action += ACT_SET_MAX_BTM_REQ_ALLOWED;
maxBtmReqAllowed = atoi(argv[i + 1]);
if (maxBtmReqAllowed <= 0 ||
maxBtmReqAllowed > 255) {
printf("ERR: Invalid max_btm_req_allowed value.");
return UAP_FAILURE;
}
} else {
printf("ERR: Incorrect input. state, block_2g_prb_req and/or max_btm_req_allowed is needed in decimal format.");
return UAP_FAILURE;
}
}
}
param.state = state;
param.block_2g_prb_req = block2gPrbReq;
param.max_btm_req_allowed = maxBtmReqAllowed;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
ioctl(sockfd, UAP_IOCTL_CMD, &ifr);
if (argc) {
printf("Set Successfull\n");
printf("state = %d \n", param.state);
printf("block_2g_prb_req = %d\n", param.block_2g_prb_req);
printf("max_btm_req_allowed = %d\n", param.max_btm_req_allowed);
} else {
printf("Get Successfull\n");
if (param.state == 1) {
printf("band steering mode: enabled\n");
printf("block_2g_prb_req = %d\n",
param.block_2g_prb_req);
printf("max_btm_req_allowed = %d\n",
param.max_btm_req_allowed);
} else {
printf("band steering: disabled\n");
}
close(sockfd);
return UAP_FAILURE;
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for tx_data_pause command
*
* $return N/A
*/
void
print_txdatapause_usage(void)
{
printf("\nUsage : tx_data_pause [ENABLE][TX_BUF_CNT]");
printf("\nOptions: ENABLE : 0 - Disable Tx data pause events");
printf("\n 1 - Enable Tx data pause events");
printf("\n TX_BUF_CNT: Max number of TX buffer for PS clients");
printf("\n empty - get Tx data pause settings\n");
return;
}
/**
* @brief Set/get txpause setting
*
* @param txpause A pointer to the Tx data pause parameters structure
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
send_txpause_ioctl(tx_data_pause_para *txpause)
{
struct ifreq ifr;
t_s32 sockfd;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)txpause;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:txpause is not supported by %s\n", dev_name);
close(sockfd);
return UAP_FAILURE;
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Creates tx_data_pause request and sends to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_txdatapause(int argc, char *argv[])
{
int opt;
tx_data_pause_para param;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_txdatapause_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (argc > 2) {
printf("ERR: Wrong number of arguments\n");
print_txdatapause_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_TX_DATA_PAUSE;
if (argc) {
if (argc >= 1) {
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
((atoi(argv[0]) < TX_DATA_PAUSE_DISABLE) ||
(atoi(argv[0]) > TX_DATA_PAUSE_ENABLE))) {
printf("ERR: First argument can either be 0 or 1\n");
print_txdatapause_usage();
return UAP_FAILURE;
}
}
if (argc == 1) {
param.action = ACTION_GET;
if (UAP_FAILURE == send_txpause_ioctl(&param)) {
return UAP_FAILURE;
}
}
param.action = ACTION_SET;
param.txpause = (t_u16)A2HEXDECIMAL(argv[0]);
if (argc == 2) {
if (IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE) {
printf("ERR: Max buffer length must be numeric\n");
print_txdatapause_usage();
return UAP_FAILURE;
}
param.txbufcnt = (t_u16)A2HEXDECIMAL(argv[1]);
}
} else {
param.action = ACTION_GET;
}
if (UAP_FAILURE == send_txpause_ioctl(&param))
return UAP_FAILURE;
if ((argc == 2) && ((t_u16)A2HEXDECIMAL(argv[1]) != param.txbufcnt)) {
printf("Max number of TX buffer allowed for all PS client: %d\n", param.txbufcnt);
return UAP_FAILURE;
}
if (!argc) {
printf("Tx data pause: %s\n",
(param.txpause == 1) ? "enabled" : "disabled");
printf("Max number of TX buffer allowed for all PS client: %d\n", param.txbufcnt);
}
return UAP_SUCCESS;
}
/**
* @brief Process host_cmd
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return N/A
*/
int
apcmd_hostcmd(int argc, char *argv[])
{
apcmdbuf *hdr;
t_u8 *buffer = NULL;
int ret = UAP_SUCCESS;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
char cmdname[256];
if (argc <= 2) {
printf("Error: invalid no of arguments\n");
printf("Syntax: ./uaputl hostcmd <hostcmd.conf> <cmdname>\n");
return UAP_FAILURE;
}
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
sprintf(cmdname, "%s", argv[2]);
ret = prepare_host_cmd_buffer(argv[1], cmdname, buffer);
if (ret == UAP_FAILURE)
goto _exit_;
/* Locate headers */
hdr = (apcmdbuf *)buffer;
cmd_len = hdr->size + BUF_HEADER_SIZE;
/* Send the command */
ret = uap_ioctl((t_u8 *)buffer, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
hdr->cmd_code &= HostCmd_CMD_ID_MASK;
if (!hdr->result) {
printf("UAPHOSTCMD: CmdCode=%#04x, Size=%#04x, SeqNum=%#04x, Result=%#04x\n", hdr->cmd_code, hdr->size, hdr->seq_num, hdr->result);
hexdump_data("payload",
(void *)(buffer + APCMDHEADERLEN),
hdr->size - (APCMDHEADERLEN -
BUF_HEADER_SIZE), ' ');
} else
printf("UAPHOSTCMD failed: CmdCode=%#04x, Size=%#04x, SeqNum=%#04x, Result=%#04x\n", hdr->cmd_code, hdr->size, hdr->seq_num, hdr->result);
} else
printf("ERR:Command sending failed!\n");
_exit_:
if (buffer)
free(buffer);
return ret;
}
#ifdef SDIO
/**
* @brief Show usage information for cmd52rw command
*
* $return N/A
*/
void
print_cmd52rw_usage(void)
{
printf("\nUsage : sdcmd52rw <FN no.> <address> [data]");
printf("\nOptions: FN no : SDIO function number.");
printf("\n address: SDIO address");
printf("\n data: data for SDIO write operation.");
printf("\n Read is performed if data is not provided.");
return;
}
/**
* @brief Process cmd52 read/write handler
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return N/A
*/
int
apcmd_cmd52_readwrite(int argc, char *argv[])
{
int opt;
sdcmd52_para param;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_cmd52rw_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(sdcmd52_para));
/* Check arguments */
if (argc < 2 || argc > 3) {
printf("ERR:wrong arguments.\n");
print_cmd52rw_usage();
return UAP_FAILURE;
}
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
(IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE)) {
printf("ERR: Only Number values are allowed\n");
print_cmd52rw_usage();
return UAP_FAILURE;
}
param.cmd52_params[0] = (t_u8)A2HEXDECIMAL(argv[0]);
if (param.cmd52_params[0] > 7) {
printf("ERR: Invalid function number!\n");
return UAP_FAILURE;
}
param.cmd52_params[1] = (t_u8)A2HEXDECIMAL(argv[1]);
param.action = 0;
if (argc == 3) {
if (IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE) {
printf("ERR: Only Number values are allowed\n");
print_cmd52rw_usage();
return UAP_FAILURE;
}
param.cmd52_params[2] = (t_u8)A2HEXDECIMAL(argv[2]);
param.action = 1;
}
param.subcmd = UAP_SDCMD52_RW;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:cmd52rw failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (argc == 2)
printf("Cmd52 read done. ");
else
printf("Cmd52 write done. ");
printf("func=%d, reg=%d, data=0x%02X\n",
param.cmd52_params[0], param.cmd52_params[1],
param.cmd52_params[2]);
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
#endif
/**
* @brief Show usage information for addbapara command
*
* $return N/A
*/
void
print_addbapara_usage(void)
{
printf("\nUsage : addbapara [timeout txwinsize rxwinsize]");
printf("\nOptions: timeout : 0 - Disable");
printf("\n 1 - 65535 : Block Ack Timeout in TU");
printf("\n txwinsize: Buffer size for ADDBA request");
printf("\n rxwinsize: Buffer size for ADDBA response");
printf("\n txamsdu: amsdu for ADDBA request");
printf("\n rxamsdu: amsdu for ADDBA response");
printf("\n empty - get ADDBA parameters\n");
return;
}
/**
* @brief Creates addbaparam request and send to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_addbapara(int argc, char *argv[])
{
int opt;
addba_param param;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_addbapara_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if ((argc != 0) && (argc != 5)) {
printf("ERR:wrong arguments. Only support 0 or 5 arguments\n");
print_addbapara_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_ADDBA_PARA;
if (argc) {
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE)
|| (IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE)
|| (IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE)
|| (IS_HEX_OR_DIGIT(argv[3]) == UAP_FAILURE)
|| (IS_HEX_OR_DIGIT(argv[4]) == UAP_FAILURE)
) {
printf("ERR: Only Number values are allowed\n");
print_addbapara_usage();
return UAP_FAILURE;
}
param.action = 1;
param.timeout = (t_u32)A2HEXDECIMAL(argv[0]);
if (param.timeout > DEFAULT_BLOCK_ACK_TIMEOUT) {
printf("ERR: Block Ack timeout should be in range [1-65535]\n");
print_addbapara_usage();
return UAP_FAILURE;
}
param.txwinsize = (t_u32)A2HEXDECIMAL(argv[1]);
param.rxwinsize = (t_u32)A2HEXDECIMAL(argv[2]);
if (param.txwinsize > MAX_TXRX_WINDOW_SIZE ||
param.rxwinsize > MAX_TXRX_WINDOW_SIZE) {
printf("ERR: Tx/Rx window size should not be greater than 1023\n");
print_addbapara_usage();
return UAP_FAILURE;
}
param.txamsdu = (t_u8)A2HEXDECIMAL(argv[3]);
param.rxamsdu = (t_u8)A2HEXDECIMAL(argv[4]);
if (param.txamsdu > 1 || param.rxamsdu > 1) {
printf("ERR: Tx/Rx amsdu should not be 0 or 1\n");
print_addbapara_usage();
return UAP_FAILURE;
}
} else {
param.action = 0;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:ADDBA PARA failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
printf("ADDBA parameters:\n");
printf("\ttimeout=%d\n", (int)param.timeout);
printf("\ttxwinsize=%d\n", (int)param.txwinsize);
printf("\trxwinsize=%d\n", (int)param.rxwinsize);
printf("\ttxamsdu=%d\n", (int)param.txamsdu);
printf("\trxamsdu=%d\n", (int)param.rxamsdu);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for aggrpriotbl command
*
* $return N/A
*/
void
print_aggrpriotbl_usage(void)
{
printf("\nUsage : aggrpriotbl <m0> <n0> <m1> <n1> ... <m7> <n7>");
printf("\nOptions: <mx> : 0 - 7, 0xff to disable AMPDU aggregation.");
printf("\n <nx> : 0 - 7, 0xff to disable AMSDU aggregation.");
printf("\n empty - get the priority table\n");
return;
}
/**
* @brief Creates aggrpriotbl request and send to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_aggrpriotbl(int argc, char *argv[])
{
int opt;
aggr_prio_tbl prio_tbl;
struct ifreq ifr;
t_s32 sockfd;
t_u8 value;
int i;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_aggrpriotbl_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&prio_tbl, 0, sizeof(prio_tbl));
/* Check arguments */
if ((argc != 0) && (argc != 16)) {
printf("ERR:wrong arguments. Only support 0 or 16 arguments\n");
print_aggrpriotbl_usage();
return UAP_FAILURE;
}
prio_tbl.subcmd = UAP_AGGR_PRIOTBL;
if (argc) {
for (i = 0; i < argc; i++) {
if ((IS_HEX_OR_DIGIT(argv[i]) == UAP_FAILURE)) {
printf("ERR: Only Number values are allowed\n");
print_aggrpriotbl_usage();
return UAP_FAILURE;
}
value = (t_u8)A2HEXDECIMAL(argv[i]);
if ((value > 7) && (value != 0xff)) {
printf("ERR: Invalid priority, Valid value 0-7, 0xff to disable aggregation.\n");
print_aggrpriotbl_usage();
return UAP_FAILURE;
}
}
prio_tbl.action = 1;
for (i = 0; i < MAX_NUM_TID; i++) {
prio_tbl.ampdu[i] = (t_u8)A2HEXDECIMAL(argv[i * 2]);
prio_tbl.amsdu[i] = (t_u8)A2HEXDECIMAL(argv[i * 2 + 1]);
}
} else {
prio_tbl.action = 0;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&prio_tbl;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: priority table failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
printf("AMPDU/AMSDU priority table:");
for (i = 0; i < MAX_NUM_TID; i++) {
printf(" %d %d", prio_tbl.ampdu[i], prio_tbl.amsdu[i]);
}
printf("\n");
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for addbareject command
*
* $return N/A
*/
void
print_addba_reject_usage(void)
{
printf("\nUsage : addbareject <m0> <m1> ... <m7>");
printf("\nOptions: <mx> : 1 enables rejection of ADDBA request for TidX.");
printf("\n 0 would accept any ADDBAs for TidX.");
printf("\n empty - get the addbareject table\n");
return;
}
/**
* @brief Creates addbareject request and send to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_addbareject(int argc, char *argv[])
{
int opt;
addba_reject_para param;
struct ifreq ifr;
t_s32 sockfd;
int i;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_addba_reject_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if ((argc != 0) && (argc != 8)) {
printf("ERR:wrong arguments. Only support 0 or 8 arguments\n");
print_addba_reject_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_ADDBA_REJECT;
if (argc) {
for (i = 0; i < argc; i++) {
if ((ISDIGIT(argv[i]) == UAP_FAILURE) ||
(atoi(argv[i]) < 0) || (atoi(argv[i]) > 1)) {
printf("ERR: Only allow 0 or 1\n");
print_addba_reject_usage();
return UAP_FAILURE;
}
}
param.action = 1;
for (i = 0; i < MAX_NUM_TID; i++) {
param.addba_reject[i] = (t_u8)atoi(argv[i]);
}
} else {
param.action = 0;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: addba reject table failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
printf("addba reject table: ");
for (i = 0; i < MAX_NUM_TID; i++) {
printf("%d ", param.addba_reject[i]);
}
printf("\n");
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Creates get_fw_info request and send to driver
*
*
* @param pfw_info Pointer to FW information structure
* @return 0--success, otherwise fail
*/
int
get_fw_info(fw_info *pfw_info)
{
struct ifreq ifr;
t_s32 sockfd;
memset(pfw_info, 0, sizeof(fw_info));
pfw_info->subcmd = UAP_FW_INFO;
pfw_info->action = 0;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return -1;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)pfw_info;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: get fw info failed\n");
close(sockfd);
return -1;
}
/* Close socket */
close(sockfd);
return 0;
}
/**
* @brief Show usage information for HT Tx command
*
* $return N/A
*/
void
print_ht_tx_usage(void)
{
printf("\nUsage : httxcfg [<txcfg>]");
printf("\nOptions: txcfg : This is a bitmap and should be used as following");
printf("\n Bit 15-7: Reserved set to 0");
printf("\n Bit 6: Short GI in 40 Mhz enable/disable");
printf("\n Bit 5: Short GI in 20 Mhz enable/disable");
printf("\n Bit 4: Green field enable/disable");
printf("\n Bit 3-2: Reserved set to 0");
printf("\n Bit 1: 20/40 Mhz enable disable.");
printf("\n Bit 0: Reserved set to 0");
return;
}
/**
* @brief Process HT Tx configuration
* @param argc Number of arguments
* @param argv A pointer to arguments array
* @return MLAN_STATUS_SUCCESS--success, otherwise--fail
*/
int
apcmd_sys_cfg_ht_tx(int argc, char *argv[])
{
int opt;
ht_tx_cfg_para param;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_ht_tx_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (argc == 0) {
param.action = ACTION_GET;
} else if (argc == 1) {
param.action = ACTION_SET;
param.tx_cfg.httxcap = (t_u16)A2HEXDECIMAL(argv[0]);
} else {
print_ht_tx_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_HT_TX_CFG;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: HT Tx configuration failed\n");
close(sockfd);
return UAP_FAILURE;
}
/* Handle response */
if (param.action == ACTION_GET) {
printf("HT Tx cfg: 0x%08x\n", param.tx_cfg.httxcap);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for vhtcfg command
*
* $return N/A
*/
void
print_vht_usage(void)
{
printf("\nUsage : vhtcfg <band> <txrx> <bwcfg> <vhtcap> <tx_mcs_map>"
"<rx_mcs_map>");
printf("\nOption: band : This is the band info for vhtcfg settings.");
printf("\n 0: Settings for both 2.4G and 5G bands");
printf("\n 1: Settings for 2.4G band");
printf("\n 2: Settings for 5G band");
printf("\n txrx : This parameter specifies the configuration of VHT" "operation for TX or/and VHT capabilities.");
printf("\n 1: configuration of VHT capabilities tx");
printf("\n 2: configuration of VHT capabilities rx");
printf("\n bwcfg : This parameter specifies the bandwidth (BW)"
"configuration applied to the vhtcfg.");
printf("\n If <txrx> is 1/3 (Tx operations)");
printf("\n 0: Tx BW follows the BW (20/40 MHz) from" "11N CFG");
printf("\n 1: Tx BW follows the BW (80/160/80+80 MHz)" "from VHT Capabilities.");
printf("\n vhtcap : This parameter specifies the VHT capabilities info.");
printf("\n tx_mcs_map : This parameter specifies the TX MCS map.");
printf("\n rx_mcs_map : This parameter specifies the RX MCS map.\n");
return;
}
/**
* @brief Handle response of the vhtcfg command
*
* @param vhtcfg Pointer to structure eth_priv_vhtcfg
*
* $return N/A
*/
void
print_vht_response(struct eth_priv_vhtcfg *vhtcfg)
{
/* GET operation */
/* Band */
if (vhtcfg->band == BAND_SELECT_BG)
printf("Band: 2.4G\n");
else
printf("Band: 5G\n");
/* BW confi9 */
if (vhtcfg->txrx & 0x3) {
if (vhtcfg->bwcfg == 0)
printf(" BW config: the 11N config\n");
else
printf(" BW config: the VHT Capabilities\n");
}
/* Tx/Rx */
if (vhtcfg->txrx & 0x1)
printf(" VHT operation for Tx: 0x%08x\n",
vhtcfg->vht_cap_info);
if (vhtcfg->txrx & 0x2)
/* VHT capabilities */
printf(" VHT Capabilities Info: 0x%08x\n",
vhtcfg->vht_cap_info);
/* MCS */
printf(" Tx MCS set: 0x%04x\n", vhtcfg->vht_tx_mcs);
printf(" Rx MCS set: 0x%04x\n", vhtcfg->vht_rx_mcs);
}
/**
* @brief Set/Get 11AC configurations
* @param argc Number of arguments
* @param argv A pointer to arguments array
* @return MLAN_STATUS_SUCCESS--success, otherwise--fail
*/
int
apcmd_sys_cfg_vht(int argc, char *argv[])
{
int opt, i = 0;
vht_cfg_para param;
struct eth_priv_vhtcfg vhtcfg;
struct ifreq ifr;
t_s32 sockfd;
t_u8 *respbuf = NULL, num = 0;
fw_info fw;
if (0 == get_fw_info(&fw)) {
/*check whether support 802.11AC through BAND_AAC bit */
if (!(fw.fw_bands & BAND_AAC)) {
printf("ERR: No support 802 11AC.\n");
return UAP_FAILURE;
}
} else {
printf("ERR: get_fw_info fail\n");
return UAP_FAILURE;
}
memset(&param, 0, sizeof(param));
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_vht_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
respbuf = (t_u8 *)malloc(MRVDRV_SIZE_OF_CMD_BUFFER);
if (!respbuf) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(respbuf, 0, MRVDRV_SIZE_OF_CMD_BUFFER);
/* Check arguments */
if ((argc > 6) || (argc < 2)) {
printf("ERR: Invalid number of arguments.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
}
if ((atoi(argv[0]) < 0) || (atoi(argv[0]) > 2)) {
printf("ERR: Invalid band selection.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
} else {
param.vht_cfg.band = (t_u32)A2HEXDECIMAL(argv[0]);
}
if ((atoi(argv[1]) <= 0) || (atoi(argv[1]) > 3)) {
printf("ERR: Invalid Tx/Rx selection.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
} else {
param.vht_cfg.txrx = (t_u32)A2HEXDECIMAL(argv[1]);
}
if (argc == 2) {
param.action = ACTION_GET;
} else if (argc > 2) {
param.vht_cfg.band = (t_u32)A2HEXDECIMAL(argv[0]);
param.vht_cfg.txrx = (t_u32)A2HEXDECIMAL(argv[1]);
if (argc == 3) {
printf("ERR: Invalid number of arguments.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
}
if (argc >= 4) {
if ((atoi(argv[2]) < 0) || (atoi(argv[2]) > 1) ||
((atoi(argv[2]) == 1) &&
(atoi(argv[0]) & BAND_SELECT_BG))) {
printf("ERR: Invalid BW cfg selection.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
} else {
param.vht_cfg.bwcfg =
(t_u32)A2HEXDECIMAL(argv[2]);
}
param.vht_cfg.vht_cap_info =
(t_u32)A2HEXDECIMAL(argv[3]);
if (argc == 4) {
param.vht_cfg.vht_tx_mcs = 0xffffffff;
param.vht_cfg.vht_rx_mcs = 0xffffffff;
} else {
if (argc == 5) {
printf("ERR: Invalid number of arguments.\n");
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
}
param.vht_cfg.vht_tx_mcs =
(t_u32)A2HEXDECIMAL(argv[4]);
param.vht_cfg.vht_rx_mcs =
(t_u32)A2HEXDECIMAL(argv[5]);
}
}
param.action = ACTION_SET;
} else {
print_vht_usage();
free(respbuf);
return UAP_FAILURE;
}
param.subcmd = UAP_VHT_CFG;
memcpy(respbuf, &param, sizeof(vht_cfg_para));
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
free(respbuf);
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)respbuf;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: 11ac VHT configuration failed\n");
close(sockfd);
free(respbuf);
return UAP_FAILURE;
}
/* Handle response */
if (param.action == ACTION_GET) {
/* Process result */
/* the first attribute is the number of vhtcfg entries */
num = *respbuf;
printf("11AC VHT Configuration: \n");
for (i = 0; i < num; i++) {
memcpy(&vhtcfg, respbuf + 1 + i * sizeof(vhtcfg),
sizeof(vhtcfg));
print_vht_response(&vhtcfg);
}
} else
printf("11AC VHT Configuration success!\n");
/* Close socket */
close(sockfd);
if (respbuf)
free(respbuf);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for TX BF command
*
* $return N/A
*/
void
print_tx_bf_usage(void)
{
printf("\nUsage : httxbfcfg <ACTION> [ACT_DATA]");
printf("\nOptions: ACTION : 1 - Performs NDP Sounding for PEER");
printf("\n 2 - TX BF interval in milliseconds");
printf("\n 3 - Not to perform any sounding");
printf("\n 4 - TX BF SNR Threshold for peer");
printf("\n ACT_DATA : Specific data for the above actions");
printf("\n For 1: PEER MAC and status");
printf("\n For 2: TX BF interval");
printf("\n For 3: PEER MAC");
printf("\n For 4: PEER MAC and SNR");
printf("\n empty - get action specific settings\n");
return;
}
/**
* @brief Handle response of the TX BF command
*
* @param param Pointer to structure tx_bf_cfg_para
*
* $return N/A
*/
void
print_tx_bf_response(tx_bf_cfg_para *param)
{
int i;
trigger_sound_args *bf_sound = param->body.bf_sound;
tx_bf_peer_args *tx_bf_peer = param->body.tx_bf_peer;
snr_thr_args *bf_snr = param->body.bf_snr;
bf_periodicity_args *bf_periodicity = param->body.bf_periodicity;
bf_global_cfg_args *bf_global = &param->body.bf_global_cfg;
switch (param->bf_action) {
case BF_GLOBAL_CONFIGURATION:
printf("Global BF Status :%s\n",
bf_global->bf_enbl ? "ENABLED" : "DISABLED");
printf("Global Sounding Status :%s\n",
bf_global->sounding_enbl ? "ENABLED" : "DISABLED");
printf("Default FB Type :%d\n", bf_global->fb_type);
printf("Default SNR Threshold :%d\n", bf_global->snr_threshold);
printf("Default Sounding Interval :%d\n",
bf_global->sounding_interval);
printf("Beamforming Mode :%d\n", bf_global->bf_mode);
break;
case TRIGGER_SOUNDING_FOR_PEER:
printf("PEER MAC = %02X:%02X:%02X:%02X:%02X:%02X, STATUS = %s\n", bf_sound->peer_mac[0], bf_sound->peer_mac[1], bf_sound->peer_mac[2], bf_sound->peer_mac[3], bf_sound->peer_mac[4], bf_sound->peer_mac[5], bf_sound->status ? "Failure" : "Success");
break;
case SET_GET_BF_PERIODICITY:
printf("PEER MAC = %02x:%02x:%02x:%02x:%02x:%02x, Interval (ms) = %d\n", bf_periodicity->peer_mac[0], bf_periodicity->peer_mac[1], bf_periodicity->peer_mac[2], bf_periodicity->peer_mac[3], bf_periodicity->peer_mac[4], bf_periodicity->peer_mac[5], bf_periodicity->interval);
break;
case TX_BF_FOR_PEER_ENBL:
for (i = 0; i < param->no_of_peers; i++) {
printf("PEER MAC = %02x:%02x:%02x:%02x:%02x:%02x\n",
tx_bf_peer->peer_mac[0], tx_bf_peer->peer_mac[1],
tx_bf_peer->peer_mac[2], tx_bf_peer->peer_mac[3],
tx_bf_peer->peer_mac[4],
tx_bf_peer->peer_mac[5]);
printf("BF Status : %s\n",
tx_bf_peer->bf_enbl ? "ENABLED" : "DISABLED");
printf("Sounding Status : %s\n",
tx_bf_peer->
sounding_enbl ? "ENABLED" : "DISABLED");
printf("FB Type : %d\n", tx_bf_peer->fb_type);
tx_bf_peer++;
}
break;
case SET_SNR_THR_PEER:
for (i = 0; i < param->no_of_peers; i++) {
printf("PEER MAC = %02x:%02x:%02x:%02x:%02x:%02x, SNR = %d\n", bf_snr->peer_mac[0], bf_snr->peer_mac[1], bf_snr->peer_mac[2], bf_snr->peer_mac[3], bf_snr->peer_mac[4], bf_snr->peer_mac[5], bf_snr->snr);
bf_snr++;
}
break;
}
}
/** Tx BF Global conf argument index */
#define BF_ENABLE_PARAM 1
#define SOUND_ENABLE_PARAM 2
#define FB_TYPE_PARAM 3
#define SNR_THRESHOLD_PARAM 4
#define SOUND_INTVL_PARAM 5
#define BF_MODE_PARAM 6
#define BF_CFG_ACT_GET 0
#define BF_CFG_ACT_SET 1
/**
* @brief Creates TX BF request and send to driver
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sys_cfg_tx_bf(int argc, char *argv[])
{
int opt, ret = UAP_FAILURE;
tx_bf_cfg_para param;
struct ifreq ifr;
t_s32 sockfd;
t_u32 bf_action = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_tx_bf_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (argc < 1) {
printf("ERR: wrong arguments.\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
((atoi(argv[0]) < BF_GLOBAL_CONFIGURATION) ||
(atoi(argv[0]) > SET_SNR_THR_PEER))) {
printf("ERR: Only Number values are allowed\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
bf_action = (t_u32)A2HEXDECIMAL(argv[0]);
param.subcmd = UAP_TX_BF_CFG;
param.bf_action = bf_action;
switch (bf_action) {
case BF_GLOBAL_CONFIGURATION:
if (argc != 1 && argc != 7) {
printf("Invalid argument for Global BF Configuration\n");
return UAP_FAILURE;
}
if (argc == 1) {
param.bf_cmd_action = BF_CFG_ACT_GET;
param.action = ACTION_GET;
} else {
param.bf_cmd_action = BF_CFG_ACT_SET;
param.action = ACTION_SET;
param.body.bf_global_cfg.bf_enbl =
atoi(argv[BF_ENABLE_PARAM]);
param.body.bf_global_cfg.sounding_enbl =
atoi(argv[SOUND_ENABLE_PARAM]);
param.body.bf_global_cfg.fb_type =
atoi(argv[FB_TYPE_PARAM]);
param.body.bf_global_cfg.snr_threshold =
atoi(argv[SNR_THRESHOLD_PARAM]);
param.body.bf_global_cfg.sounding_interval =
atoi(argv[SOUND_INTVL_PARAM]);
param.body.bf_global_cfg.bf_mode =
atoi(argv[BF_MODE_PARAM]);
}
break;
case TRIGGER_SOUNDING_FOR_PEER:
if (argc != 2) {
printf("ERR: wrong arguments.\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
if ((ret =
mac2raw(argv[1],
param.body.bf_sound[0].peer_mac)) != UAP_SUCCESS) {
printf("ERR: %s Address\n",
ret == UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
return UAP_FAILURE;
}
param.bf_cmd_action = BF_CFG_ACT_SET;
param.action = ACTION_SET;
break;
case SET_GET_BF_PERIODICITY:
if (argc != 2 && argc != 3) {
printf("ERR: wrong arguments.\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
if ((ret =
mac2raw(argv[1],
param.body.bf_periodicity[0].peer_mac)) !=
UAP_SUCCESS) {
printf("ERR: %s Address\n",
ret == UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
return UAP_FAILURE;
}
if (argc == 3) {
if (IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE)
return UAP_FAILURE;
param.body.bf_periodicity[0].interval =
(t_u32)A2HEXDECIMAL(argv[2]);
param.bf_cmd_action = BF_CFG_ACT_SET;
param.action = ACTION_SET;
} else {
param.bf_cmd_action = BF_CFG_ACT_GET;
param.action = ACTION_GET;
}
break;
case TX_BF_FOR_PEER_ENBL:
if (argc != 1 && argc != 5) {
printf("ERR: wrong arguments.\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
if (argc == 1) {
param.bf_cmd_action = BF_CFG_ACT_GET;
param.action = ACTION_GET;
} else {
if ((ret =
mac2raw(argv[1],
param.body.tx_bf_peer[0].peer_mac)) !=
UAP_SUCCESS) {
printf("ERR: %s Address\n",
ret ==
UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
return UAP_FAILURE;
}
param.body.tx_bf_peer->bf_enbl = atoi(argv[2]);
param.body.tx_bf_peer->sounding_enbl = atoi(argv[3]);
param.body.tx_bf_peer->fb_type = atoi(argv[4]);
param.bf_cmd_action = BF_CFG_ACT_SET;
param.action = ACTION_SET;
}
break;
case SET_SNR_THR_PEER:
if (argc != 1 && argc != 3) {
printf("ERR: wrong arguments.\n");
print_tx_bf_usage();
return UAP_FAILURE;
}
if (argc == 1) {
param.bf_cmd_action = BF_CFG_ACT_GET;
param.action = ACTION_GET;
} else {
if ((ret =
mac2raw(argv[1],
param.body.bf_snr[0].peer_mac)) !=
UAP_SUCCESS) {
printf("ERR: %s Address\n",
ret ==
UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
return UAP_FAILURE;
}
if (IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE)
return UAP_FAILURE;
param.body.bf_snr[0].snr = (t_u8)A2HEXDECIMAL(argv[2]);
param.bf_cmd_action = BF_CFG_ACT_SET;
param.action = ACTION_SET;
}
break;
default:
return UAP_FAILURE;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: TX BF configuration failed\n");
close(sockfd);
return UAP_FAILURE;
}
printf("TX BF configuration successful\n");
/* Handle response */
if (param.action == ACTION_GET)
print_tx_bf_response(&param);
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for hscfg command
*
* $return N/A
*/
void
print_hscfg_usage(void)
{
printf("\nUsage : hscfg [condition [[GPIO# [gap]]]]");
printf("\nOptions: condition : bit 0 = 1 -- broadcast data");
printf("\n bit 1 = 1 -- unicast data");
printf("\n bit 2 = 1 -- mac event");
printf("\n bit 3 = 1 -- multicast packet");
printf("\n bit 6 = 1 -- mgmt frame received");
printf("\n GPIO: the pin number (e.g. 0-7) of GPIO used to wakeup the host");
printf("\n or 0xff interface (e.g. SDIO) used to wakeup the host");
printf("\n gap: time between wakeup signal and wakeup event (in milliseconds)");
printf("\n or 0xff for special setting when GPIO is used to wakeup host");
printf("\n empty - get current host sleep parameters\n");
return;
}
/**
* @brief Creates host sleep parameter request and send to driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_hscfg(int argc, char *argv[])
{
int opt;
int i = 0;
ds_hs_cfg hscfg;
struct ifreq ifr;
t_s32 sockfd;
if ((argc == 2) && strstr(argv[1], "-1"))
strcpy(argv[1], "0xffff");
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_hscfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&hscfg, 0, sizeof(hscfg));
hscfg.subcmd = UAP_HS_CFG;
/* Check arguments */
if (argc > 3) {
printf("ERR:wrong arguments.\n");
print_hscfg_usage();
return UAP_FAILURE;
}
if (argc) {
for (i = 0; i < argc; i++) {
if (IS_HEX_OR_DIGIT(argv[i]) == UAP_FAILURE) {
printf("ERR: Invalid argument %s\n", argv[i]);
print_hscfg_usage();
return UAP_FAILURE;
}
}
}
if (argc) {
hscfg.flags |= HS_CFG_FLAG_SET | HS_CFG_FLAG_CONDITION;
hscfg.conditions = (t_u32)A2HEXDECIMAL(argv[0]);
if (hscfg.conditions >= 0xffff)
hscfg.conditions = HS_CFG_CANCEL;
if ((hscfg.conditions != HS_CFG_CANCEL) &&
(hscfg.conditions & ~HS_CFG_CONDITION_MASK)) {
printf("ERR:Illegal conditions 0x%x\n",
hscfg.conditions);
print_hscfg_usage();
return UAP_FAILURE;
}
if (argc > 1) {
hscfg.flags |= HS_CFG_FLAG_GPIO;
hscfg.gpio = (t_u32)A2HEXDECIMAL(argv[1]);
if (hscfg.gpio > 255) {
printf("ERR:Illegal gpio 0x%x\n", hscfg.gpio);
print_hscfg_usage();
return UAP_FAILURE;
}
}
if (argc > 2) {
hscfg.flags |= HS_CFG_FLAG_GAP;
hscfg.gap = (t_u32)A2HEXDECIMAL(argv[2]);
}
} else {
hscfg.flags = HS_CFG_FLAG_GET;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&hscfg;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:UAP_HS_CFG failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
printf("Host sleep parameters:\n");
printf("\tconditions=%d\n", (int)hscfg.conditions);
printf("\tGPIO=%d\n", (int)hscfg.gpio);
printf("\tgap=%d\n", (int)hscfg.gap);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for hssetpara command
*
* $return N/A
*/
void
print_hssetpara_usage(void)
{
printf("\nUsage : hssetpara condition [[GPIO# [gap]]]");
printf("\nOptions: condition : bit 0 = 1 -- broadcast data");
printf("\n bit 1 = 1 -- unicast data");
printf("\n bit 2 = 1 -- mac event");
printf("\n bit 3 = 1 -- multicast packet");
printf("\n bit 6 = 1 -- mgmt frame received");
printf("\n GPIO: the pin number (e.g. 0-7) of GPIO used to wakeup the host");
printf("\n or 0xff interface (e.g. SDIO) used to wakeup the host");
printf("\n gap: time between wakeup signal and wakeup event (in milliseconds)");
printf("\n or 0xff for special setting when GPIO is used to wakeup host\n");
return;
}
/**
* @brief Creates host sleep parameter request and send to driver
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_hssetpara(int argc, char *argv[])
{
int opt;
int i = 0;
ds_hs_cfg hscfg;
struct ifreq ifr;
t_s32 sockfd;
if ((argc == 2) && strstr(argv[1], "-1"))
strcpy(argv[1], "0xffff");
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_hssetpara_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&hscfg, 0, sizeof(hscfg));
hscfg.subcmd = UAP_HS_SET_PARA;
/* Check arguments */
if ((argc < 1) || (argc > 3)) {
printf("ERR:wrong arguments.\n");
print_hssetpara_usage();
return UAP_FAILURE;
}
for (i = 0; i < argc; i++) {
if (IS_HEX_OR_DIGIT(argv[i]) == UAP_FAILURE) {
printf("ERR: Invalid argument %s\n", argv[i]);
print_hssetpara_usage();
return UAP_FAILURE;
}
}
hscfg.flags |= HS_CFG_FLAG_SET | HS_CFG_FLAG_CONDITION;
hscfg.conditions = (t_u32)A2HEXDECIMAL(argv[0]);
if (hscfg.conditions >= 0xffff)
hscfg.conditions = HS_CFG_CANCEL;
if ((hscfg.conditions != HS_CFG_CANCEL) &&
(hscfg.conditions & ~HS_CFG_CONDITION_MASK)) {
printf("ERR:Illegal conditions 0x%x\n", hscfg.conditions);
print_hssetpara_usage();
return UAP_FAILURE;
}
if (argc > 1) {
hscfg.flags |= HS_CFG_FLAG_GPIO;
hscfg.gpio = (t_u32)A2HEXDECIMAL(argv[1]);
if (hscfg.gpio > 255) {
printf("ERR:Illegal gpio 0x%x\n", hscfg.gpio);
print_hssetpara_usage();
return UAP_FAILURE;
}
}
if (argc > 2) {
hscfg.flags |= HS_CFG_FLAG_GAP;
hscfg.gap = (t_u32)A2HEXDECIMAL(argv[2]);
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)&hscfg;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:UAP_HS_SET_PARA failed\n");
close(sockfd);
return UAP_FAILURE;
}
printf("Host sleep parameters setting successful!\n");
printf("\tconditions=%d\n", (int)hscfg.conditions);
printf("\tGPIO=%d\n", (int)hscfg.gpio);
printf("\tgap=%d\n", (int)hscfg.gap);
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief get dfs repeater mode
*
* @param mode status of DFS repeater mode is returned here
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
uap_ioctl_dfs_repeater_mode(int *mode)
{
struct ifreq ifr;
dfs_repeater_mode param;
t_s32 sockfd;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
param.action = ACTION_GET;
param.subcmd = UAP_DFS_REPEATER_MODE;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
printf("ERR:UAP_DFS_REPEATER_MODE is not"
"supported by %s\n", dev_name);
close(sockfd);
return UAP_FAILURE;
}
*mode = (int)param.mode;
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Get CAC timer status
*
* @param mode status of CAC timer is returned here
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
uap_ioctl_cac_timer_status(unsigned int *mode)
{
struct ifreq ifr;
cac_timer_status param;
t_s32 sockfd;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
param.action = ACTION_GET;
param.subcmd = UAP_CAC_TIMER_STATUS;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
printf("ERR:UAP_CAC_TIMER_STATUS is not"
"supported by %s\n", dev_name);
close(sockfd);
return UAP_FAILURE;
}
*mode = (int)param.mode;
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Set/get power mode
*
* @param pm A pointer to ps_mgmt structure
* @param flag flag for query
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
send_power_mode_ioctl(ps_mgmt * pm, int flag)
{
struct ifreq ifr;
t_s32 sockfd;
t_u32 result = 0;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)pm;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_POWER_MODE, &ifr)) {
memcpy((void *)&result, (void *)pm, sizeof(result));
if (result == 1) {
printf("ERR:Power mode needs to be disabled before modifying it\n");
} else {
perror("");
printf("ERR:UAP_POWER_MODE is not supported by %s\n",
dev_name);
}
close(sockfd);
return UAP_FAILURE;
}
if (flag) {
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
switch (pm->ps_mode) {
case 0:
printf("power mode = Disabled\n");
break;
case 1:
printf("power mode = Periodic DTIM PS\n");
break;
case 2:
printf("power mode = Inactivity based PS \n");
break;
}
if (pm->flags & PS_FLAG_SLEEP_PARAM) {
printf("Sleep param:\n");
printf("\tctrl_bitmap=%d\n", (int)pm->sleep_param.ctrl_bitmap);
printf("\tmin_sleep=%d us\n", (int)pm->sleep_param.min_sleep);
printf("\tmax_sleep=%d us\n", (int)pm->sleep_param.max_sleep);
}
if (pm->flags & PS_FLAG_INACT_SLEEP_PARAM) {
printf("Inactivity sleep param:\n");
printf("\tinactivity_to=%d us\n",
(int)pm->inact_param.inactivity_to);
printf("\tmin_awake=%d us\n", (int)pm->inact_param.min_awake);
printf("\tmax_awake=%d us\n", (int)pm->inact_param.max_awake);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the pscfg command
*
* $return N/A
*/
void
print_pscfg_usage(void)
{
printf("\nUsage : pscfg [MODE] [CTRL INACTTO MIN_SLEEP MAX_SLEEP MIN_AWAKE MAX_AWAKE]");
printf("\nOptions: MODE : 0 - disable power mode");
printf("\n 1 - periodic DTIM power save mode");
printf("\n 2 - inactivity based power save mode");
printf("\n PS PARAMS:");
printf("\n CTRL: 0 - disable protection frame Tx before PS");
printf("\n 1 - enable protection frame Tx before PS");
printf("\n INACTTO: Inactivity timeout in miroseconds");
printf("\n MIN_SLEEP: Minimum sleep duration in microseconds");
printf("\n MAX_SLEEP: Maximum sleep duration in miroseconds");
printf("\n MIN_AWAKE: Minimum awake duration in microseconds");
printf("\n MAX_AWAKE: Maximum awake duration in microseconds");
printf("\n MIN_AWAKE,MAX_AWAKE only valid for inactivity based power save mode");
printf("\n empty - get current power mode\n");
return;
}
/**
* @brief Creates power mode request and send to driver
* and sends to the driver
*
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_pscfg(int argc, char *argv[])
{
int opt;
ps_mgmt pm;
int ret = UAP_SUCCESS;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_pscfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&pm, 0, sizeof(ps_mgmt));
/* Check arguments */
if ((argc > 7) ||
((argc != 0) && (argc != 1) && (argc != 5) && (argc != 7))) {
printf("ERR:wrong arguments.\n");
print_pscfg_usage();
return UAP_FAILURE;
}
if (argc) {
if (send_power_mode_ioctl(&pm, 1) == UAP_FAILURE)
return UAP_FAILURE;
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 2)) {
printf("ERR:Illegal power mode %s. Must be either '0' '1' or '2'.\n", argv[0]);
print_pscfg_usage();
return UAP_FAILURE;
}
pm.flags = PS_FLAG_PS_MODE;
pm.ps_mode = atoi(argv[0]);
if ((pm.ps_mode == PS_MODE_DISABLE) && (argc > 1)) {
printf("ERR: Illegal parameter for disable power mode\n");
print_pscfg_usage();
return UAP_FAILURE;
}
if ((pm.ps_mode != PS_MODE_INACTIVITY) && (argc > 5)) {
printf("ERR:Min awake period and Max awake period are valid only for inactivity based power save mode\n");
print_pscfg_usage();
return UAP_FAILURE;
}
if (argc >= 5) {
if ((ISDIGIT(argv[1]) == 0) || (atoi(argv[1]) < 0) ||
(atoi(argv[1]) > 1)) {
printf("ERR:Illegal ctrl bitmap = %s. Must be either '0' or '1'.\n", argv[1]);
print_pscfg_usage();
return UAP_FAILURE;
}
pm.flags |=
PS_FLAG_SLEEP_PARAM | PS_FLAG_INACT_SLEEP_PARAM;
pm.sleep_param.ctrl_bitmap = atoi(argv[1]);
if ((ISDIGIT(argv[2]) == 0) || (ISDIGIT(argv[3]) == 0)
|| (ISDIGIT(argv[4]) == 0)) {
printf("ERR:Illegal parameter\n");
print_pscfg_usage();
return UAP_FAILURE;
}
pm.inact_param.inactivity_to = atoi(argv[2]);
pm.sleep_param.min_sleep = atoi(argv[3]);
pm.sleep_param.max_sleep = atoi(argv[4]);
if (pm.sleep_param.min_sleep > pm.sleep_param.max_sleep) {
printf("ERR: MIN_SLEEP value should be less than or equal to MAX_SLEEP\n");
return UAP_FAILURE;
}
if (pm.sleep_param.min_sleep < PS_SLEEP_PARAM_MIN ||
((pm.sleep_param.max_sleep > PS_SLEEP_PARAM_MAX) &&
pm.sleep_param.ctrl_bitmap)) {
printf("ERR: Incorrect value of sleep period. Please check README\n");
return UAP_FAILURE;
}
if (argc == 7) {
if ((ISDIGIT(argv[5]) == 0) ||
(ISDIGIT(argv[6]) == 0)) {
printf("ERR:Illegal parameter\n");
print_pscfg_usage();
return UAP_FAILURE;
}
pm.inact_param.min_awake = atoi(argv[5]);
pm.inact_param.max_awake = atoi(argv[6]);
if (pm.inact_param.min_awake >
pm.inact_param.max_awake) {
printf("ERR: MIN_AWAKE value should be less than or equal to MAX_AWAKE\n");
return UAP_FAILURE;
}
if (pm.inact_param.min_awake <
PS_AWAKE_PERIOD_MIN) {
printf("ERR: Incorrect value of MIN_AWAKE period.\n");
return UAP_FAILURE;
}
}
}
}
ret = send_power_mode_ioctl(&pm, 0);
return ret;
}
/**
* @brief Get bss status started/stopped
*
* @param current bss status
* @return UAP_SUCCESS/UAP_FAILURE
*/
static int
get_bss_status(int *status)
{
apcmdbuf_sys_configure *cmd_buf = NULL;
tlvbuf_bss_status *tlv = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_FAILURE;
/* Initialize the command length */
cmd_len = sizeof(apcmdbuf_sys_configure) + sizeof(tlvbuf_bss_status);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_bss_status *)(buffer + sizeof(apcmdbuf_sys_configure));
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
tlv->tag = MRVL_BSS_STATUS_TLV_ID;
tlv->length = 2;
cmd_buf->action = ACTION_GET;
endian_convert_tlv_header_out(tlv);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
endian_convert_tlv_header_in(tlv);
tlv->bss_status = uap_le16_to_cpu(tlv->bss_status);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if ((cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) ||
(tlv->tag != MRVL_BSS_STATUS_TLV_ID)) {
printf("ERR:Corrupted response! cmd_code=%x, Tlv->tag=%x\n", cmd_buf->cmd_code, tlv->tag);
free(buffer);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
if (tlv->bss_status == 0)
*status = UAP_BSS_STOP;
else
*status = UAP_BSS_START;
} else {
printf("ERR:Could not get BSS status!\n");
}
} else {
printf("ERR:Command sending failed!\n");
}
if (buffer)
free(buffer);
return ret;
}
/**
* @brief start/stop/reset bss
*
* @param mode bss control mode
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
send_bss_ctl_ioctl(int mode)
{
struct ifreq ifr;
t_s32 sockfd;
t_u32 data = (t_u32)mode;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&data;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_BSS_CTRL, &ifr)) {
printf("ERR:UAP_BSS_CTRL fail, result=%d\n", (int)data);
switch (mode) {
case UAP_BSS_START:
if (data == BSS_FAILURE_START_INVAL)
printf("ERR:Could not start BSS! Invalid BSS parameters.\n");
else
printf("ERR:Could not start BSS!\n");
break;
case UAP_BSS_STOP:
printf("ERR:Could not stop BSS!\n");
break;
case UAP_BSS_RESET:
printf("ERR:Could not reset system!\n");
break;
}
close(sockfd);
return UAP_FAILURE;
}
switch (mode) {
case UAP_BSS_START:
printf("BSS start successful!\n");
break;
case UAP_BSS_STOP:
printf("BSS stop successful!\n");
break;
case UAP_BSS_RESET:
printf("System reset successful!\n");
break;
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sys_reset command
*
* $return N/A
*/
void
print_sys_reset_usage(void)
{
printf("\nUsage : sys_reset\n");
return;
}
/**
* @brief Creates a sys_reset request and sends to the driver
*
* Usage: "sys_reset"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sys_reset(int argc, char *argv[])
{
int opt;
int ret = UAP_SUCCESS;
ps_mgmt pm;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sys_reset_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 0) {
printf("ERR:Too many arguments.\n");
print_sys_reset_usage();
return UAP_FAILURE;
}
memset(&pm, 0, sizeof(ps_mgmt));
pm.flags = PS_FLAG_PS_MODE;
pm.ps_mode = PS_MODE_DISABLE;
if (send_power_mode_ioctl(&pm, 0) == UAP_FAILURE)
return UAP_FAILURE;
ret = send_bss_ctl_ioctl(UAP_BSS_RESET);
return ret;
}
/**
* @brief Show usage information for the bss_start command
*
* $return N/A
*/
void
print_bss_start_usage(void)
{
printf("\nUsage : bss_start\n");
return;
}
/**
* @brief Creates a BSS start request and sends to the driver
*
* Usage: "bss_start"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_bss_start(int argc, char *argv[])
{
int opt;
t_u8 *buf = NULL;
t_u16 buf_len = 0;
int status = 0;
int ret = UAP_SUCCESS;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_bss_start_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 0) {
printf("ERR:Too many arguments.\n");
print_bss_start_usage();
return UAP_FAILURE;
}
if (get_bss_status(&status) != UAP_SUCCESS) {
printf("ERR:Cannot get current bss status!\n");
return UAP_FAILURE;
}
if (status == UAP_BSS_START) {
printf("ERR: Could not start BSS! BSS already started!\n");
return UAP_FAILURE;
}
/* Query BSS settings */
/* Alloc buf for command */
buf_len = sizeof(apcmdbuf_bss_configure) + sizeof(bss_config_t);
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset((char *)buf, 0, buf_len);
/* Get all parametes first */
if (get_bss_config(buf) == UAP_FAILURE) {
printf("ERR:Reading current bss configuration\n");
free(buf);
return UAP_FAILURE;
}
ret = check_bss_config(buf + sizeof(apcmdbuf_bss_configure));
if (ret == UAP_FAILURE) {
printf("ERR: Wrong bss configuration!\n");
goto done;
}
ret = send_bss_ctl_ioctl(UAP_BSS_START);
done:
if (buf)
free(buf);
return ret;
}
/**
* @brief Show usage information for the bss_stop command
*
* $return N/A
*/
void
print_bss_stop_usage(void)
{
printf("\nUsage : bss_stop\n");
return;
}
/**
* @brief Creates a BSS stop request and sends to the driver
*
* Usage: "bss_stop"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_bss_stop(int argc, char *argv[])
{
int opt;
int status = 0;
int ret = UAP_SUCCESS;
unsigned int cac_timer = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_bss_stop_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind; /* Check arguments */
if (argc != 0) {
printf("ERR:Too many arguments.\n");
print_bss_stop_usage();
return UAP_FAILURE;
}
if (get_bss_status(&status) != UAP_SUCCESS) {
printf("ERR:Cannot get current bss status!\n");
return UAP_FAILURE;
}
if ((status != UAP_BSS_STOP)
|| ((uap_ioctl_cac_timer_status(&cac_timer) == UAP_SUCCESS)
&& (cac_timer))
)
ret = send_bss_ctl_ioctl(UAP_BSS_STOP);
else {
printf("ERR: Could not stop BSS! BSS already stopped!\n");
ret = UAP_FAILURE;
}
return ret;
}
void
print_skip_cac_usage(void)
{
printf("\nUsage : skip_cac [MODE]");
printf("\nOptions: MODE : 0 - Disable skip CAC mode");
printf("\n 1 - Enable skip CAC mode");
printf("\n empty - get skip CAC mode\n");
return;
}
/**
* @brief Skip CAC for next immediate BSS_START
*
* Usage: "skip_cac [1/0]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_skip_cac(int argc, char *argv[])
{
int opt;
skip_cac_para param;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_skip_cac_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&param, 0, sizeof(param));
/* Check arguments */
if (argc > 1) {
printf("ERR:wrong arguments. Only support 1 argument\n");
print_skip_cac_usage();
return UAP_FAILURE;
}
param.subcmd = UAP_SKIP_CAC;
if (argc) {
if (argc == 1) {
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
((atoi(argv[0]) < 0) || (atoi(argv[0]) > 1))) {
printf("ERR: Only Number values are allowed\n");
print_skip_cac_usage();
return UAP_FAILURE;
}
}
param.action = 1;
param.skip_cac = (t_u16)A2HEXDECIMAL(argv[0]);
} else {
param.action = 0;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
if (argc)
printf("ERR:skip_cac set failed\n");
else {
perror("");
printf("ERR:skip_cac get failed\n");
}
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
if (param.skip_cac == 1) {
printf("skip CAC mode: enabled\n");
} else {
printf("skip CAC mode: disabled\n");
}
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sta_list command
*
* $return N/A
*/
void
print_sta_list_usage(void)
{
printf("\nUsage : sta_list\n");
return;
}
/**
* @brief Creates a STA list request and sends to the driver
*
* Usage: "sta_list"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sta_list(int argc, char *argv[])
{
struct ifreq ifr;
t_s32 sockfd;
sta_list list;
int i = 0;
int opt;
int rssi = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sta_list_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 0) {
printf("ERR:Too many arguments.\n");
print_sta_list_usage();
return UAP_FAILURE;
}
memset(&list, 0, sizeof(sta_list));
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&list;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_GET_STA_LIST, &ifr)) {
perror("");
printf("ERR:UAP_GET_STA_LIST is not supported by %s\n",
dev_name);
close(sockfd);
return UAP_FAILURE;
}
printf("Number of STA = %d\n\n", list.sta_count);
for (i = 0; i < list.sta_count; i++) {
printf("STA %d information:\n", i + 1);
printf("=====================\n");
printf("MAC Address: ");
print_mac(list.info[i].mac_address);
printf("\nPower mgmt status: %s\n",
(list.info[i].power_mgmt_status ==
0) ? "active" : "power save");
printf("Mode: %s\n",
(list.info[i].bandmode ==
BAND_B) ? "11b," : (list.info[i].bandmode ==
BAND_G) ? "11g," : (list.info[i].
bandmode ==
BAND_A) ? "11a,"
: (list.info[i].bandmode ==
BAND_GN) ? "2.4G_11n," : (list.info[i].bandmode ==
BAND_AN) ? "5G_11n,"
: (list.info[i].bandmode ==
BAND_GAC) ? "2.4G_11ac," : (list.info[i].bandmode ==
BAND_AAC) ? "5G_11ac,"
: (list.info[i].bandmode ==
BAND_GAX) ? "2.4G_11ax," : (list.info[i].bandmode ==
BAND_AAX) ? "5G_11ax," :
"unknown");
/** On some platform, s8 is same as unsigned char*/
rssi = (int)list.info[i].rssi;
if (rssi > 0x7f)
rssi = -(256 - rssi);
printf("Rssi : %d dBm\n\n", rssi);
if (list.info[i].ie_len)
hexdump_data("IE", (void *)list.info[i].ie_buf,
list.info[i].ie_len, ' ');
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sta_deauth command
*
* $return N/A
*/
void
print_sta_deauth_usage(void)
{
printf("\nUsage : sta_deauth <STA_MAC_ADDRESS>\n");
return;
}
/**
* @brief Creates a STA deauth request and sends to the driver
*
* Usage: "sta_deauth <STA_MAC_ADDRESS>"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sta_deauth(int argc, char *argv[])
{
APCMDBUF_STA_DEAUTH *cmd_buf = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_FAILURE;
int opt;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sta_deauth_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 1) {
printf("ERR:wrong arguments! Must provide STA_MAC_ADDRESS.\n");
print_sta_deauth_usage();
return UAP_FAILURE;
}
/* Initialize the command length */
cmd_len = sizeof(APCMDBUF_STA_DEAUTH);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
/* Locate headers */
cmd_buf = (APCMDBUF_STA_DEAUTH *)buffer;
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_STA_DEAUTH;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
if ((ret = mac2raw(argv[0], cmd_buf->sta_mac_address)) != UAP_SUCCESS) {
printf("ERR: %s Address\n", ret == UAP_FAILURE ? "Invalid MAC" :
ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" : "Multicast");
free(buffer);
return UAP_FAILURE;
}
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (cmd_buf->cmd_code != (APCMD_STA_DEAUTH | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response!\n");
free(buffer);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
printf("Deauthentication successful!\n");
} else {
printf("ERR:Deauthentication unsuccessful!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
if (buffer)
free(buffer);
return ret;
}
/**
* @brief Show usage information for the sta_deauth_ext command
*
* $return N/A
*/
void
print_sta_deauth_ext_usage(void)
{
printf("\nUsage : sta_deauth <STA_MAC_ADDRESS> <REASCON_CODE>\n");
return;
}
/**
* @brief Creates a STA deauth request and sends to the driver
*
* Usage: "sta_deauth <STA_MAC_ADDRESS><REASON_CODE>"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sta_deauth_ext(int argc, char *argv[])
{
int ret = UAP_SUCCESS;
int opt;
deauth_param param;
struct ifreq ifr;
t_s32 sockfd;
t_u32 result = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sta_deauth_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 2) {
printf("ERR:wrong arguments! Must provide STA_MAC_ADDRESS, REASON_CODE.\n");
print_sta_deauth_ext_usage();
return UAP_FAILURE;
}
memset(&param, 0, sizeof(deauth_param));
if ((ret = mac2raw(argv[0], param.mac_addr)) != UAP_SUCCESS) {
printf("ERR: %s Address\n", ret == UAP_FAILURE ? "Invalid MAC" :
ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" : "Multicast");
return UAP_FAILURE;
}
if ((IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE) ||
(atoi(argv[1]) > MAX_DEAUTH_REASON_CODE)) {
printf("ERR: Invalid input for reason code\n");
return UAP_FAILURE;
}
param.reason_code = (t_u16)A2HEXDECIMAL(argv[1]);
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_STA_DEAUTH, &ifr)) {
memcpy((void *)&result, (void *)&param, sizeof(result));
if (result == 1)
printf("ERR:UAP_STA_DEAUTH fail\n");
else
perror("");
close(sockfd);
return UAP_FAILURE;
}
printf("Station deauth successful\n");
/* Close socket */
close(sockfd);
return ret;
}
/**
* @brief Show usage information for the radioctrl command
*
* $return N/A
*/
void
print_radio_ctl_usage(void)
{
printf("\nUsage : radioctrl [ 0 | 1 ]\n");
return;
}
/**
* @brief Creates a Radio control request and sends to the driver
*
* Usage: "radioctrl [0 | 1]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_radio_ctl(int argc, char *argv[])
{
int opt;
int param[2] = { 0, 0 }; /* action (Set/Get), Control (ON/OFF) */
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_radio_ctl_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 1) {
printf("ERR:wrong arguments! Only 1 or 0 arguments are supported.\n");
print_radio_ctl_usage();
return UAP_FAILURE;
}
if (argc && (is_input_valid(RADIOCONTROL, argc, argv) != UAP_SUCCESS)) {
print_radio_ctl_usage();
return UAP_FAILURE;
}
if (argc) {
param[0] = ACTION_SET;
param[1] = atoi(argv[0]);
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_RADIO_CTL, &ifr)) {
printf("ERR:UAP_RADIO_CTL fail\n");
close(sockfd);
return UAP_FAILURE;
}
if (argc)
printf("Radio setting successful\n");
else
printf("Radio is %s.\n", (param[1]) ? "on" : "off");
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the txratecfg command
*
* $return N/A
*/
void
print_txratecfg_usage(void)
{
printf("\nUsage : txratecfg <datarate index> Index should be one of the following.\n");
printf("\n [l] is <format>");
printf("\n <format> - This parameter specifies the data rate format used in this command");
printf("\n 0: LG");
printf("\n 1: HT");
printf("\n 2: VHT");
printf("\n 3: HE");
printf("\n 0xff: Auto");
printf("\n");
printf("\n [m] is <index>");
printf("\n <index> - This parameter specifies the rate or MCS index");
printf("\n If <format> is 0 (LG),");
printf("\n 0 1 Mbps");
printf("\n 1 2 Mbps");
printf("\n 2 5.5 Mbps");
printf("\n 3 11 Mbps");
printf("\n 4 6 Mbps");
printf("\n 5 9 Mbps");
printf("\n 6 12 Mbps");
printf("\n 7 18 Mbps");
printf("\n 8 24 Mbps");
printf("\n 9 36 Mbps");
printf("\n 10 48 Mbps");
printf("\n 11 54 Mbps");
printf("\n If <format> is 1 (HT), ");
printf("\n 0 MCS0");
printf("\n 1 MCS1");
printf("\n 2 MCS2");
printf("\n 3 MCS3");
printf("\n 4 MCS4");
printf("\n 5 MCS5");
printf("\n 6 MCS6");
printf("\n 7 MCS7");
printf("\n 8 MCS8");
printf("\n 9 MCS9");
printf("\n 10 MCS10");
printf("\n 11 MCS11");
printf("\n 12 MCS12");
printf("\n 13 MCS13");
printf("\n 14 MCS14");
printf("\n 15 MCS15");
printf("\n 32 MCS32");
printf("\n If <format> is 2 (VHT), ");
printf("\n 0 MCS0");
printf("\n 1 MCS1");
printf("\n 2 MCS2");
printf("\n 3 MCS3");
printf("\n 4 MCS4");
printf("\n 5 MCS5");
printf("\n 6 MCS6");
printf("\n 7 MCS7");
printf("\n 8 MCS8");
printf("\n 9 MCS9");
printf("\n [n] is <nss>");
printf("\n <nss> - This parameter specifies the NSS. It is valid only for VHT");
printf("\n If <format> is 2 (VHT), ");
printf("\n 1 NSS1");
printf("\n 2 NSS2");
printf("\n If <format> is 3 (HE), ");
printf("\n 0 MCS0");
printf("\n 1 MCS1");
printf("\n 2 MCS2");
printf("\n 3 MCS3");
printf("\n 4 MCS4");
printf("\n 5 MCS5");
printf("\n 6 MCS6");
printf("\n 7 MCS7");
printf("\n 8 MCS8");
printf("\n 9 MCS9");
printf("\n 10 MCS10");
printf("\n 11 MCS11");
printf("\n [n] is <nss>");
printf("\n <nss> - This parameter specifies the NSS. It is valid only for HE");
printf("\n If <format> is 3 (HE), ");
printf("\n 1 NSS1");
printf("\n 2 NSS2");
printf("\n");
return;
}
/**
* @brief Creates a Tx Rate Config get request and sends to the driver
* @param rate_config Tx rate config struct
* @return UAP_SUCCESS/UAP_FAILURE
*/
static int
get_tx_rate_cfg(tx_rate_cfg_t *rate_config)
{
struct ifreq ifr;
t_s32 sockfd;
int ret = UAP_SUCCESS;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(rate_config, 0, sizeof(tx_rate_cfg_t));
rate_config->subcmd = UAP_TX_RATE_CFG;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)rate_config;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
printf("ERR:UAP_IOCTL_CMD fail\n");
close(sockfd);
return UAP_FAILURE;
}
/* Close socket */
close(sockfd);
return ret;
}
static char *rate_format[4] = { "LG", "HT", "VHT", "HE" };
static char *lg_rate[] = { "1 Mbps", "2 Mbps", "5.5 Mbps", "11 Mbps",
"6 Mbps", "9 Mbps", "12 Mbps", "18 Mbps",
"24 Mbps", "36 Mbps", "48 Mbps", "54 Mbps"
};
/**
* @brief Creates a Tx Rate Config request and sends to the driver
*
* Usage: "txratecfg <datarate>"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_tx_rate_cfg(int argc, char *argv[])
{
int opt;
int status = 0;
tx_rate_cfg_t tx_rate_config;
struct ifreq ifr;
t_s32 sockfd;
HTCap_t htcap;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_txratecfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 3) {
printf("ERR:wrong arguments! Only 0~3 arguments are supported.\n");
print_txratecfg_usage();
return UAP_FAILURE;
}
if (argc && (is_input_valid(TXRATECFG, argc, argv) != UAP_SUCCESS)) {
print_txratecfg_usage();
return UAP_FAILURE;
}
memset(&tx_rate_config, 0, sizeof(tx_rate_cfg_t));
tx_rate_config.subcmd = UAP_TX_RATE_CFG;
if (argc) {
tx_rate_config.action = ACTION_SET;
tx_rate_config.rate_format = A2HEXDECIMAL(argv[0]);
if (argc >= 2)
tx_rate_config.rate = A2HEXDECIMAL(argv[1]);
if (argc >= 3)
tx_rate_config.nss = A2HEXDECIMAL(argv[2]);
if (argc == 4)
tx_rate_config.rate_setting = A2HEXDECIMAL(argv[3]);
tx_rate_config.user_data_cnt = argc;
/* If bss is already started and uAP is in (short GI in 20 MHz + GF) mode, block MCS0-MCS7 rates */
if (get_bss_status(&status) != UAP_SUCCESS) {
printf("ERR:Cannot get current bss status!\n");
return UAP_FAILURE;
}
if (UAP_SUCCESS == get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0] &&
(status == UAP_BSS_START)) {
if (((tx_rate_config.rate >= 0) &&
(tx_rate_config.rate <= 7))
&&
(IS_11N_20MHZ_SHORTGI_ENABLED
(htcap.ht_cap_info) &&
IS_11N_GF_ENABLED(htcap.ht_cap_info))) {
printf("ERR: Invalid rate for bss in (20MHz Short GI + Green Field) mode\n");
return UAP_FAILURE;
}
if ((tx_rate_config.rate == 32) &&
(!(IS_11N_40MHZ_ENABLED
(htcap.ht_cap_info)))) {
printf("ERR:uAP must be configured to operate in 40MHz if tx_rate is MCS32\n");
return UAP_FAILURE;
}
}
}
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)&tx_rate_config;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
printf("ERR:UAP_IOCTL_CMD fail\n");
close(sockfd);
return UAP_FAILURE;
}
if (argc) {
printf("Transmit Rate setting successful\n");
} else {
/* GET operation */
printf("Tx Rate Configuration: \n");
/* format */
if (tx_rate_config.rate_format == 0xFF) {
printf(" Type: 0xFF (Auto)\n");
} else if (tx_rate_config.rate_format <= 3) {
printf(" Type: %d (%s)\n",
tx_rate_config.rate_format,
rate_format[tx_rate_config.rate_format]);
if (tx_rate_config.rate_format == 0)
printf(" Rate Index: %d (%s)\n",
tx_rate_config.rate,
lg_rate[tx_rate_config.rate]);
else if (tx_rate_config.rate_format >= 1)
printf(" MCS Index: %d\n",
(int)tx_rate_config.rate);
if (tx_rate_config.rate_format == 2 ||
tx_rate_config.rate_format == 3)
printf(" NSS: %d\n",
(int)tx_rate_config.nss);
if (tx_rate_config.rate_setting == 0xffff)
printf("Rate setting :Preamble type/BW/GI/STBC/.. : auto \n");
else {
printf("Preamble type: %x\n",
(tx_rate_config.rate_setting & 0x0003));
printf("BW: %x\n",
(tx_rate_config.
rate_setting & 0x001C) >> 2);
printf("LTF + GI size %x\n",
(tx_rate_config.
rate_setting & 0x0060) >> 5);
printf("STBC %x\n",
(tx_rate_config.
rate_setting & 0x0080) >> 7);
printf("DCM %x\n",
(tx_rate_config.
rate_setting & 0x0100) >> 8);
printf("Coding %x\n",
(tx_rate_config.
rate_setting & 0x0200) >> 9);
printf("maxPE %x\n",
(tx_rate_config.
rate_setting & 0x3000) >> 12);
}
} else {
printf(" Unknown rate format.\n");
}
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the antcfg
* command
*
* $return N/A
*/
void
print_antcfg_usage(void)
{
printf("\nUsage : antcfg [<TX_MODE> <RX_MODE>]\n");
printf("\n MODE : 1 - Antenna A");
printf("\n 2 - Antenna B");
printf("\n 3 - Antenna A+B");
printf("\n empty - Get current antenna settings\n");
return;
}
/**
* @brief Creates a RF Antenna Mode Config request and sends to the driver
*
* Usage: "antcfg [MODE]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_antcfg(int argc, char *argv[])
{
int opt;
int tx_val = 0;
int rx_val = 0;
ant_cfg_t antenna_config;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_antcfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 2) {
printf("ERR:wrong arguments!\n");
print_antcfg_usage();
return UAP_FAILURE;
}
if (argc) {
sscanf(argv[0], "%x", (unsigned int *)&tx_val);
if (tx_val < 1 || tx_val > 0x303) {
printf("ERR:Illegal ANTENNA parameter %s. Must be either '1', '2' or '3'.\n", argv[0]);
print_antcfg_usage();
return UAP_FAILURE;
}
if (argc == 2) {
sscanf(argv[1], "%x", (unsigned int *)&rx_val);
if (rx_val < 1 || rx_val > 0x303) {
printf("ERR:Illegal RX ANTENNA parameter %s. Must be either '1', '2' or '3'.\n", argv[1]);
print_antcfg_usage();
return UAP_FAILURE;
}
}
}
memset(&antenna_config, 0, sizeof(ant_cfg_t));
antenna_config.subcmd = UAP_ANTENNA_CFG;
if (argc) {
antenna_config.action = ACTION_SET;
if (argc == 1) {
antenna_config.tx_mode = tx_val;
antenna_config.rx_mode = tx_val;
} else {
antenna_config.tx_mode = tx_val;
antenna_config.rx_mode = rx_val;
}
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)&antenna_config;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
printf("ERR:UAP_IOCTL_CMD fail\n");
close(sockfd);
return UAP_FAILURE;
}
if (argc) {
printf("Antenna mode setting successful\n");
} else {
printf("TX Antenna mode is 0x%x.\n", antenna_config.tx_mode);
printf("RX Antenna mode is 0x%x.\n", antenna_config.rx_mode);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the htstreamcfg
* command
*
* $return N/A
*/
void
print_htstreamcfg_usage(void)
{
printf("\nUsage : htstreamcfg [<n>]\n");
printf("\n Where <n> ");
printf("\n 0x11: HT stream 1x1 mode");
printf("\n 0x22: HT stream 2x2 mode\n");
return;
}
/**
* @brief Set/get HT stream configurations
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_htstreamcfg(int argc, char *argv[])
{
int opt;
htstream_cfg_t htstream_cfg;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_htstreamcfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
memset(&htstream_cfg, 0, sizeof(htstream_cfg));
if (argc == 0) {
htstream_cfg.action = ACTION_GET;
} else if (argc == 1) {
if ((t_u32)A2HEXDECIMAL(argv[0]) != HT_STREAM_MODE_1X1
&& (t_u32)A2HEXDECIMAL(argv[0]) != HT_STREAM_MODE_2X2) {
printf("ERR:Invalid argument\n");
return UAP_FAILURE;
}
htstream_cfg.action = ACTION_SET;
htstream_cfg.stream_cfg = (t_u32)A2HEXDECIMAL(argv[0]);
} else {
print_htstreamcfg_usage();
return UAP_FAILURE;
}
htstream_cfg.subcmd = UAP_HT_STREAM_CFG;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&htstream_cfg;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: HT STREAM configuration failed\n");
close(sockfd);
return UAP_FAILURE;
}
/* Handle response */
if (htstream_cfg.action == ACTION_GET) {
if (htstream_cfg.stream_cfg == HT_STREAM_MODE_1X1)
printf("HT stream is in 1x1 mode\n");
else if (htstream_cfg.stream_cfg == HT_STREAM_MODE_2X2)
printf("HT stream is in 2x2 mode\n");
else
printf("HT stream is unknown mode\n");
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
static int
get_802_11ac_cfg(struct eth_priv_vhtcfg *vhtcfg)
{
t_u8 *buf = NULL;
t_u8 *pos = NULL;
mrvl_priv_cmd *cmd = NULL;
struct ifreq ifr;
t_s32 sockfd;
buf = (t_u8 *)malloc(MRVDRV_SIZE_OF_CMD_BUFFER);
if (!buf) {
printf("ERR: cannot allocate buffer for command payload \n");
return UAP_FAILURE;
}
memset(buf, 0, MRVDRV_SIZE_OF_CMD_BUFFER);
cmd = (mrvl_priv_cmd *)malloc(sizeof(mrvl_priv_cmd));
if (!cmd) {
printf("ERR: cannot allocate buffer for cmd \n");
free(buf);
return UAP_FAILURE;
}
/*prepare command: mlanutl uap0 vhtcfg 2 3 , GET operation */
pos = buf;
strncpy((char *)pos, CMD_NXP, strlen(CMD_NXP));
pos += strlen(CMD_NXP);
strncpy((char *)pos, "vhtcfg2 3", strlen("vhtcfg2 3"));
/* fill up buffer */
cmd->buf = buf;
cmd->used_len = 0;
cmd->total_len = MRVDRV_SIZE_OF_CMD_BUFFER;
/* Perform IOCTL */
memset(&ifr, 0, sizeof(struct ifreq));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)cmd;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
if (cmd)
free(cmd);
if (buf)
free(buf);
return UAP_FAILURE;
}
if (ioctl(sockfd, MRVLPRIVCMD, &ifr)) {
if (cmd)
free(cmd);
if (buf)
free(buf);
close(sockfd);
return UAP_FAILURE;
}
/* Process result */
memcpy(vhtcfg, buf + 1, sizeof(struct eth_priv_vhtcfg));
close(sockfd);
free(cmd);
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sys_config command
*
* $return N/A
*/
void
print_sys_config_usage(void)
{
printf("\nUsage : sys_config [CONFIG_FILE]\n");
printf("\nIf CONFIG_FILE is provided, a 'set' is performed, else a 'get' is performed.\n");
printf("CONFIG_FILE is file contain all the Micro AP settings.\n");
return;
}
/**
* @brief Show usage information for the rdeeprom command
*
* $return N/A
*/
void
print_apcmd_read_eeprom_usage(void)
{
printf("\nUsage: rdeeprom <offset> <bytecount>\n");
printf(" offset : 0,4,8,..., multiple of 4\n");
printf(" bytecount : 4-20, multiple of 4\n");
return;
}
/**
* @brief Show protocol tlv
*
* @param protocol Protocol number
*
* $return N/A
*/
void
print_protocol(t_u16 protocol)
{
switch (protocol) {
case 0:
case PROTOCOL_NO_SECURITY:
printf("PROTOCOL = No security\n");
break;
case PROTOCOL_STATIC_WEP:
printf("PROTOCOL = Static WEP\n");
break;
case PROTOCOL_WPA:
printf("PROTOCOL = WPA \n");
break;
case PROTOCOL_WPA2:
printf("PROTOCOL = WPA2 \n");
break;
case PROTOCOL_WPA | PROTOCOL_WPA2:
printf("PROTOCOL = WPA/WPA2 \n");
break;
case PROTOCOL_WPA3_SAE:
printf("PROTOCOL = WPA3 SAE \n");
break;
default:
printf("Unknown PROTOCOL: 0x%x \n", protocol);
break;
}
}
/**
* @brief Show wep tlv
*
* @param tlv Pointer to wep tlv
*
* $return N/A
*/
void
print_wep_key(tlvbuf_wep_key *tlv)
{
int i;
t_u16 tlv_len;
tlv_len = *(t_u8 *)&tlv->length;
tlv_len |= (*((t_u8 *)&tlv->length + 1) << 8);
if (tlv_len <= 2) {
printf("wrong wep_key tlv: length=%d\n", tlv_len);
return;
}
printf("WEP KEY_%d = ", tlv->key_index);
for (i = 0; i < tlv_len - 2; i++)
printf("%02x ", tlv->key[i]);
if (tlv->is_default)
printf("\nDefault WEP Key = %d\n", tlv->key_index);
else
printf("\n");
}
/**
* @brief Parses a command line
*
* @param line The line to parse
* @param args Pointer to the argument buffer to be filled in
* @return Number of arguments in the line or EOF
*/
static int
parse_line(char *line, char *args[])
{
int arg_num = 0;
int is_start = 0;
int is_quote = 0;
int is_escape = 0;
int length = 0;
int i = 0;
int j = 0;
arg_num = 0;
length = strlen(line);
/* Process line */
/* Find number of arguments */
is_start = 0;
is_quote = 0;
for (i = 0; i < length; i++) {
/* Ignore leading spaces */
if (is_start == 0) {
if (line[i] == ' ') {
continue;
} else if (line[i] == '\t') {
continue;
} else if (line[i] == '\n') {
break;
} else {
is_start = 1;
args[arg_num] = &line[i];
arg_num++;
}
}
if (is_start == 1) {
if ((line[i] == '\\') && (i < (length - 1))) {
if (line[i + 1] == '"') {
is_escape = 1;
for (j = i; j < length - 1; j++) {
line[j] = line[j + 1];
}
line[length - 1] = '\0';
continue;
}
}
/* Ignore comments */
if (line[i] == '#') {
if (is_quote == 0) {
line[i] = '\0';
arg_num--;
}
break;
}
/* Separate by '=' */
if (line[i] == '=') {
if (is_quote == 0) {
line[i] = '\0';
is_start = 0;
continue;
}
}
/* Separate by ',' */
if (line[i] == ',') {
if (is_quote == 0) {
line[i] = '\0';
is_start = 0;
continue;
}
}
/* Change ',' to ' ', but not inside quotes */
if ((line[i] == ',') && (is_quote == 0)) {
line[i] = ' ';
continue;
}
}
/* Remove newlines */
if (line[i] == '\n') {
line[i] = '\0';
}
/* Check for quotes */
if (line[i] == '"') {
if (is_escape) {
is_escape = 0;
/* no change in is_quote */
} else {
is_quote = (is_quote == 1) ? 0 : 1;
}
continue;
}
if (((line[i] == ' ') || (line[i] == '\t')) && (is_quote == 0)) {
line[i] = '\0';
is_start = 0;
continue;
}
}
return arg_num;
}
/**
* @brief Parse function for a configuration line
*
* @param s Storage buffer for data
* @param size Maximum size of data
* @param stream File stream pointer
* @param line Pointer to current line within the file
* @param _pos Output string or NULL
* @return String or NULL
*/
static char *
config_get_line(char *s, int size, FILE * stream, int *line, char **_pos)
{
*_pos = mlan_config_get_line(stream, s, size, line);
return *_pos;
}
/**
* @brief Read the profile and sends to the driver
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
apcmd_sys_config_profile(int argc, char *argv[])
{
FILE *config_file = NULL;
char *line = NULL;
int li = 0;
char *pos = NULL;
int arg_num = 0;
char *args[30];
int i;
int is_ap_config = 0;
int is_ap_mac_filter = 0;
apcmdbuf_sys_configure *cmd_buf = NULL;
HTCap_t htcap;
int enable_11n = -1;
t_u16 tlv_offset_11n = 0;
t_u32 supported_mcs_set = 0;
t_u8 *buffer = NULL;
t_u8 *tmp_buffer = NULL;
t_u16 cmd_len = 0;
t_u16 tlv_len = 0;
int keyindex = -1;
int protocol = -1;
int pwkcipher_wpa = -1;
int pwkcipher_wpa2 = -1;
int gwkcipher = -1;
tlvbuf_sta_mac_addr_filter *filter_tlv = NULL;
tlvbuf_channel_config *channel_band_tlv = NULL;
int filter_mac_count = -1;
int tx_data_rate = -1;
int tx_beacon_rate = -1;
int mcbc_data_rate = -1;
t_u8 rate[MAX_RATES];
int found = 0;
char country_80211d[4];
t_u8 state_80211d = 0;
int chan_mode = 0;
int band = 0;
int band_flag = 0;
int chan_number = 0;
t_u16 max_sta_num_supported = 0;
fw_info fw;
struct eth_priv_vhtcfg vhtcfg = { 0 };
int ret = UAP_SUCCESS;
memset(rate, 0, MAX_RATES);
/* Check if file exists */
config_file = fopen(argv[0], "r");
if (config_file == NULL) {
printf("\nERR:Config file can not open.\n");
return UAP_FAILURE;
}
line = (char *)malloc(MAX_CONFIG_LINE);
if (!line) {
printf("ERR:Cannot allocate memory for line\n");
ret = UAP_FAILURE;
goto done;
}
memset(line, 0, MAX_CONFIG_LINE);
/* Parse file and process */
while (config_get_line(line, MAX_CONFIG_LINE, config_file, &li, &pos)) {
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Received config line (%d) = %s\n",
li, line);
#endif
arg_num = parse_line(line, args);
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Number of arguments = %d\n",
arg_num);
for (i = 0; i < arg_num; i++) {
uap_printf(MSG_DEBUG, "\tDBG:Argument %d. %s\n", i + 1,
args[i]);
}
#endif
/* Check for end of AP configurations */
if (is_ap_config == 1) {
if (strcmp(args[0], "}") == 0) {
is_ap_config = 0;
if (tx_data_rate != -1) {
if ((!rate[0]) && (tx_data_rate) &&
(is_tx_rate_valid
((t_u8)tx_data_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Data Rate \n");
ret = UAP_FAILURE;
goto done;
}
if (rate[0] && tx_data_rate) {
for (i = 0; rate[i] != 0; i++) {
if ((rate[i] &
~BASIC_RATE_SET_BIT)
== tx_data_rate) {
found = 1;
break;
}
}
if (!found) {
printf("ERR: Invalid Tx Data Rate \n");
ret = UAP_FAILURE;
goto done;
}
}
}
if (tx_beacon_rate != -1) {
if ((!rate[0]) && (tx_beacon_rate) &&
(is_tx_rate_valid
((t_u8)tx_beacon_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Beacon Rate \n");
ret = UAP_FAILURE;
goto done;
}
if (rate[0] && tx_beacon_rate) {
for (i = 0; rate[i] != 0; i++) {
if ((rate[i] &
~BASIC_RATE_SET_BIT)
== tx_beacon_rate) {
found = 1;
break;
}
}
if (!found) {
printf("ERR: Invalid Tx Beacon Rate \n");
ret = UAP_FAILURE;
goto done;
}
}
/* Append a new TLV */
tlvbuf_tx_data_rate *tlv = NULL;
tlv_len = sizeof(tlvbuf_tx_data_rate);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append tx beacon rate TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_tx_data_rate *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_TX_BEACON_RATE_TLV_ID;
tlv->length = 2;
tlv->tx_data_rate = tx_beacon_rate;
endian_convert_tlv_header_out(tlv);
tlv->tx_data_rate =
uap_cpu_to_le16(tlv->
tx_data_rate);
}
if (mcbc_data_rate != -1) {
if ((!rate[0]) && (mcbc_data_rate) &&
(is_mcbc_rate_valid
((t_u8)mcbc_data_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Data Rate \n");
ret = UAP_FAILURE;
goto done;
}
if (rate[0] && mcbc_data_rate) {
for (i = 0; rate[i] != 0; i++) {
if (rate[i] &
BASIC_RATE_SET_BIT)
{
if ((rate[i] &
~BASIC_RATE_SET_BIT)
==
mcbc_data_rate)
{
found = 1;
break;
}
}
}
if (!found) {
printf("ERR: Invalid MCBC Data Rate \n");
ret = UAP_FAILURE;
goto done;
}
}
/* Append a new TLV */
tlvbuf_mcbc_data_rate *tlv = NULL;
tlv_len = sizeof(tlvbuf_mcbc_data_rate);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append tx data rate TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_mcbc_data_rate *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_MCBC_DATA_RATE_TLV_ID;
tlv->length = 2;
tlv->mcbc_datarate = mcbc_data_rate;
endian_convert_tlv_header_out(tlv);
tlv->mcbc_datarate =
uap_cpu_to_le16(tlv->
mcbc_datarate);
}
if ((protocol == PROTOCOL_STATIC_WEP) &&
(enable_11n == 1)) {
printf("ERR:WEP cannot be used when AP operates in 802.11n mode.\n");
ret = UAP_FAILURE;
goto done;
}
if ((protocol == PROTOCOL_WPA2_MIXED) &&
((pwkcipher_wpa < 0) ||
(pwkcipher_wpa2 < 0))) {
printf("ERR:Both PwkCipherWPA and PwkCipherWPA2 should be defined for Mixed mode.\n");
ret = UAP_FAILURE;
goto done;
}
if (((pwkcipher_wpa >= 0) ||
(pwkcipher_wpa2 >= 0)) &&
(gwkcipher >= 0)) {
if ((protocol == PROTOCOL_WPA) ||
(protocol == PROTOCOL_WPA2_MIXED)) {
if (enable_11n != -1) {
if (is_cipher_valid_with_11n(pwkcipher_wpa, gwkcipher, protocol, enable_11n) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
ret = UAP_FAILURE;
goto done;
}
} else if
(is_cipher_valid_with_proto
(pwkcipher_wpa,
gwkcipher,
protocol) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
ret = UAP_FAILURE;
goto done;
}
}
if ((protocol == PROTOCOL_WPA2) ||
(protocol == PROTOCOL_WPA2_MIXED)
|| (protocol == PROTOCOL_WPA3_SAE)
) {
if (enable_11n != -1) {
if (is_cipher_valid_with_11n(pwkcipher_wpa2, gwkcipher, protocol, enable_11n) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
ret = UAP_FAILURE;
goto done;
}
} else if
(is_cipher_valid_with_proto
(pwkcipher_wpa2,
gwkcipher,
protocol) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
ret = UAP_FAILURE;
goto done;
}
}
}
if (0 == get_fw_info(&fw)) {
/*check whether support 802.11AC through BAND_AAC bit */
if (fw.fw_bands & BAND_AAC) {
ret = get_802_11ac_cfg(&vhtcfg);
if (ret != UAP_SUCCESS)
goto done;
if (enable_11n != -1) {
/* Note: When 11AC is disabled, FW sets vht_rx_mcs to 0xffff */
if ((vhtcfg.
vht_rx_mcs !=
0xffff) &&
(!enable_11n)) {
printf("ERR: 11n must be enabled when AP operates in 11ac mode. \n");
ret = UAP_FAILURE;
goto done;
}
}
} else
printf("No support 802 11AC.\n");
} else {
printf("ERR: get_fw_info fail\n");
ret = UAP_FAILURE;
goto done;
}
if (protocol != -1) {
tlvbuf_protocol *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_protocol);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append protocol TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_protocol *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_PROTOCOL_TLV_ID;
tlv->length = 2;
tlv->protocol = protocol;
endian_convert_tlv_header_out(tlv);
tlv->protocol =
uap_cpu_to_le16(tlv->protocol);
if (protocol &
(PROTOCOL_WPA | PROTOCOL_WPA2 |
PROTOCOL_WPA3_SAE)) {
tlvbuf_akmp *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_akmp);
tmp_buffer =
realloc(buffer,
cmd_len +
tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append AKMP TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure
*)buffer;
tlv = (tlvbuf_akmp *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_AKMP_TLV_ID;
tlv->length = 4; /* sizeof(tlvbuf_akmp) - TLVHEADER */
if (protocol &
PROTOCOL_WPA3_SAE) {
tlv->key_mgmt =
KEY_MGMT_SAE;
} else {
tlv->key_mgmt =
KEY_MGMT_PSK;
}
endian_convert_tlv_header_out
(tlv);
tlv->key_mgmt =
uap_cpu_to_le16(tlv->
key_mgmt);
tlv->key_mgmt_operation = 0;
}
}
if (pwkcipher_wpa >= 0) {
tlvbuf_pwk_cipher *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_pwk_cipher);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append cipher TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_pwk_cipher *)(buffer +
cmd_len);
memset(tlv, 0, tlv_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_CIPHER_PWK_TLV_ID;
tlv->length =
sizeof(tlvbuf_pwk_cipher) -
TLVHEADER_LEN;
tlv->pairwise_cipher = pwkcipher_wpa;
tlv->protocol = PROTOCOL_WPA;
endian_convert_tlv_header_out(tlv);
tlv->protocol =
uap_cpu_to_le16(tlv->protocol);
}
if (pwkcipher_wpa2 >= 0) {
tlvbuf_pwk_cipher *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_pwk_cipher);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append cipher TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_pwk_cipher *)(buffer +
cmd_len);
memset(tlv, 0, tlv_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_CIPHER_PWK_TLV_ID;
tlv->length =
sizeof(tlvbuf_pwk_cipher) -
TLVHEADER_LEN;
tlv->pairwise_cipher = pwkcipher_wpa2;
tlv->protocol = PROTOCOL_WPA2;
endian_convert_tlv_header_out(tlv);
tlv->protocol =
uap_cpu_to_le16(tlv->protocol);
}
if (gwkcipher >= 0) {
tlvbuf_gwk_cipher *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_gwk_cipher);
tmp_buffer =
realloc(buffer,
cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append cipher TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf =
(apcmdbuf_sys_configure *)
buffer;
tlv = (tlvbuf_gwk_cipher *)(buffer +
cmd_len);
memset(tlv, 0, tlv_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_CIPHER_GWK_TLV_ID;
tlv->length =
sizeof(tlvbuf_gwk_cipher) -
TLVHEADER_LEN;
tlv->group_cipher = gwkcipher;
endian_convert_tlv_header_out(tlv);
}
cmd_buf->size = cmd_len;
/* Send collective command */
if (uap_ioctl
((t_u8 *)cmd_buf, &cmd_len,
cmd_len) == UAP_SUCCESS) {
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR: Failed to set the configuration!\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR: Command sending failed!\n");
ret = UAP_FAILURE;
goto done;
}
cmd_len = 0;
if (buffer) {
free(buffer);
buffer = NULL;
}
continue;
}
}
/* Check for beginning of AP configurations */
if (strcmp(args[0], "ap_config") == 0) {
is_ap_config = 1;
cmd_len = sizeof(apcmdbuf_sys_configure);
if (buffer) {
free(buffer);
buffer = NULL;
}
buffer = (t_u8 *)malloc(cmd_len);
if (!buffer) {
printf("ERR:Cannot allocate memory!\n");
ret = UAP_FAILURE;
goto done;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->action = ACTION_SET;
continue;
}
/* Check for end of AP MAC address filter configurations */
if (is_ap_mac_filter == 1) {
if (strcmp(args[0], "}") == 0) {
is_ap_mac_filter = 0;
if (filter_tlv->count != filter_mac_count) {
printf("ERR:Number of MAC address provided does not match 'Count'\n");
ret = UAP_FAILURE;
goto done;
}
if (filter_tlv->count) {
filter_tlv->length =
(filter_tlv->count * ETH_ALEN) +
2;
cmd_len -=
(MAX_MAC_ONESHOT_FILTER -
filter_mac_count) * ETH_ALEN;
} else {
filter_tlv->length =
(MAX_MAC_ONESHOT_FILTER *
ETH_ALEN) + 2;
memset(filter_tlv->mac_address, 0,
MAX_MAC_ONESHOT_FILTER *
ETH_ALEN);
}
cmd_buf->size = cmd_len;
endian_convert_tlv_header_out(filter_tlv);
if (uap_ioctl
((t_u8 *)cmd_buf, &cmd_len,
cmd_len) == UAP_SUCCESS) {
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR: Failed to set the configuration!\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR: Command sending failed!\n");
ret = UAP_FAILURE;
goto done;
}
cmd_len = 0;
if (buffer) {
free(buffer);
buffer = NULL;
}
continue;
}
}
if (strcmp(args[0], "11d_enable") == 0) {
if (IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE) {
printf("ERR: valid input for state are 0 or 1\n");
ret = UAP_FAILURE;
goto done;
}
state_80211d = (t_u8)A2HEXDECIMAL(args[1]);
if ((state_80211d != 0) && (state_80211d != 1)) {
printf("ERR: valid input for state are 0 or 1 \n");
ret = UAP_FAILURE;
goto done;
}
if (sg_snmp_mib
(ACTION_SET, OID_80211D_ENABLE,
sizeof(state_80211d), &state_80211d)
== UAP_FAILURE) {
ret = UAP_FAILURE;
goto done;
}
}
if (strcmp(args[0], "country") == 0) {
apcmdbuf_cfg_80211d *cmd_buf = NULL;
ieeetypes_subband_set_t sub_bands[MAX_SUB_BANDS];
t_u8 no_of_sub_band = 0;
t_u16 buf_len;
t_u16 cmdlen;
t_u8 *buf = NULL;
if ((strlen(args[1]) > 3) || (strlen(args[1]) == 0)) {
printf("In-correct country input\n");
ret = UAP_FAILURE;
goto done;
}
strncpy(country_80211d, args[1],
sizeof(country_80211d) - 1);
for (i = 0; (unsigned int)i < strlen(country_80211d);
i++) {
if ((country_80211d[i] < 'A') ||
(country_80211d[i] > 'z')) {
printf("Invalid Country Code\n");
ret = UAP_FAILURE;
goto done;
}
if (country_80211d[i] > 'Z')
country_80211d[i] =
country_80211d[i] - 'a' + 'A';
}
no_of_sub_band =
parse_domain_file(country_80211d, band,
sub_bands, NULL);
if (no_of_sub_band == UAP_FAILURE) {
printf("Parsing Failed\n");
ret = UAP_FAILURE;
goto done;
}
buf_len = sizeof(apcmdbuf_cfg_80211d);
buf_len +=
no_of_sub_band *
sizeof(ieeetypes_subband_set_t);
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
ret = UAP_FAILURE;
goto done;
}
memset(buf, 0, buf_len);
cmd_buf = (apcmdbuf_cfg_80211d *)buf;
cmdlen = buf_len;
cmd_buf->size = cmdlen - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->action = uap_cpu_to_le16(ACTION_SET);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
cmd_buf->domain.tag = uap_cpu_to_le16(TLV_TYPE_DOMAIN);
cmd_buf->domain.length =
uap_cpu_to_le16(sizeof(domain_param_t)
- BUF_HEADER_SIZE +
(no_of_sub_band *
sizeof
(ieeetypes_subband_set_t)));
memset(cmd_buf->domain.country_code, ' ',
sizeof(cmd_buf->domain.country_code));
memcpy(cmd_buf->domain.country_code, country_80211d,
strlen(country_80211d));
memcpy(cmd_buf->domain.subband, sub_bands,
no_of_sub_band *
sizeof(ieeetypes_subband_set_t));
/* Send the command */
if (uap_ioctl((t_u8 *)cmd_buf, &cmdlen, cmdlen) ==
UAP_SUCCESS) {
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR: Failed to set the configuration!\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR: Command sending failed!\n");
ret = UAP_FAILURE;
goto done;
}
if (buf)
free(buf);
}
/* Check for beginning of AP MAC address filter configurations */
if (strcmp(args[0], "ap_mac_filter") == 0) {
is_ap_mac_filter = 1;
cmd_len =
sizeof(apcmdbuf_sys_configure) +
sizeof(tlvbuf_sta_mac_addr_filter) +
(MAX_MAC_ONESHOT_FILTER * ETH_ALEN);
if (buffer) {
free(buffer);
buffer = NULL;
}
buffer = (t_u8 *)malloc(cmd_len);
if (!buffer) {
printf("ERR:Cannot allocate memory!\n");
ret = UAP_FAILURE;
goto done;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->action = ACTION_SET;
filter_tlv =
(tlvbuf_sta_mac_addr_filter *)(buffer +
sizeof
(apcmdbuf_sys_configure));
filter_tlv->tag = MRVL_STA_MAC_ADDR_FILTER_TLV_ID;
filter_tlv->length = 2;
filter_tlv->count = 0;
filter_mac_count = 0;
continue;
}
if ((strcmp(args[0], "FilterMode") == 0) && is_ap_mac_filter) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0) ||
(atoi(args[1]) > 2)) {
printf("ERR:Illegal FilterMode paramter %d. Must be either '0', '1', or '2'.\n", atoi(args[1]));
ret = UAP_FAILURE;
goto done;
}
filter_tlv->filter_mode = atoi(args[1]);
continue;
}
if ((strcmp(args[0], "Count") == 0) && is_ap_mac_filter) {
filter_tlv->count = atoi(args[1]);
if ((ISDIGIT(args[1]) == 0) ||
(filter_tlv->count > MAX_MAC_ONESHOT_FILTER)) {
printf("ERR: Illegal Count parameter.\n");
ret = UAP_FAILURE;
goto done;
}
}
if ((strncmp(args[0], "mac_", 4) == 0) && is_ap_mac_filter) {
if (filter_mac_count < MAX_MAC_ONESHOT_FILTER) {
if (mac2raw
(args[1],
&filter_tlv->mac_address[filter_mac_count *
ETH_ALEN]) !=
UAP_SUCCESS) {
printf("ERR: Invalid MAC address %s \n",
args[1]);
ret = UAP_FAILURE;
goto done;
}
filter_mac_count++;
} else {
printf("ERR: Filter table can not have more than %d MAC addresses\n", MAX_MAC_ONESHOT_FILTER);
ret = UAP_FAILURE;
goto done;
}
}
if (strcmp(args[0], "SSID") == 0) {
if (arg_num == 1) {
printf("ERR:SSID field is blank!\n");
ret = UAP_FAILURE;
goto done;
} else {
tlvbuf_ssid *tlv = NULL;
if (args[1][0] == '"') {
args[1]++;
}
if (args[1][strlen(args[1]) - 1] == '"') {
args[1][strlen(args[1]) - 1] = '\0';
}
if ((strlen(args[1]) > MAX_SSID_LENGTH) ||
(strlen(args[1]) == 0)) {
printf("ERR:SSID length out of range (%d to %d).\n", MIN_SSID_LENGTH, MAX_SSID_LENGTH);
ret = UAP_FAILURE;
goto done;
}
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_ssid) + strlen(args[1]);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot realloc SSID TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_ssid *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_SSID_TLV_ID;
tlv->length = strlen(args[1]);
memcpy(tlv->ssid, args[1], tlv->length);
endian_convert_tlv_header_out(tlv);
}
}
if (strcmp(args[0], "BeaconPeriod") == 0) {
if (is_input_valid(BEACONPERIOD, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_beacon_period *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_beacon_period);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot realloc beacon period TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_beacon_period *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_BEACON_PERIOD_TLV_ID;
tlv->length = 2;
tlv->beacon_period_ms = (t_u16)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->beacon_period_ms =
uap_cpu_to_le16(tlv->beacon_period_ms);
}
if (strcmp(args[0], "ChanList") == 0) {
if (is_input_valid(SCANCHANNELS, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_channel_list *tlv = NULL;
channel_list *pchan_list = NULL;
/* Append a new TLV */
tlv_len =
sizeof(tlvbuf_channel_list) +
((arg_num - 1) * sizeof(channel_list));
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append channel list TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_channel_list *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_CHANNELLIST_TLV_ID;
tlv->length = sizeof(channel_list) * (arg_num - 1);
pchan_list = (channel_list *) tlv->chan_list;
for (i = 0; i < (arg_num - 1); i++) {
band_flag = -1;
sscanf(args[i + 1], "%d.%d", &chan_number,
&band_flag);
pchan_list->chan_number = chan_number;
pchan_list->bandcfg.chanBand = BAND_2GHZ;
if (((band_flag != -1) && (band_flag)) ||
(chan_number > MAX_CHANNELS_BG)) {
pchan_list->bandcfg.chanBand =
BAND_5GHZ;
}
pchan_list++;
}
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "Channel") == 0) {
if (is_input_valid(CHANNEL, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_channel_config *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_channel_config);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append channel TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_channel_config *)(buffer + cmd_len);
channel_band_tlv = tlv;
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_CHANNELCONFIG_TLV_ID;
tlv->length =
sizeof(tlvbuf_channel_config) - TLVHEADER_LEN;
tlv->chan_number = (t_u8)atoi(args[1]);
if (tlv->chan_number > MAX_CHANNELS_BG)
band = BAND_A;
else
band = BAND_B | BAND_G;
if ((arg_num - 1) == 2) {
chan_mode = atoi(args[2]);
memset(&(tlv->bandcfg), 0,
sizeof(tlv->bandcfg));
if (chan_mode & BITMAP_ACS_MODE) {
int mode;
if (uap_ioctl_dfs_repeater_mode(&mode)
== UAP_SUCCESS) {
if (mode) {
printf("ERR: ACS in DFS Repeater mode" " is not allowed\n");
ret = UAP_FAILURE;
goto done;
}
}
tlv->bandcfg.scanMode = SCAN_MODE_ACS;
}
if (chan_mode & BITMAP_CHANNEL_ABOVE)
tlv->bandcfg.chan2Offset =
SEC_CHAN_ABOVE;
if (chan_mode & BITMAP_CHANNEL_BELOW)
tlv->bandcfg.chan2Offset =
SEC_CHAN_BELOW;
} else
memset(&(tlv->bandcfg), 0,
sizeof(tlv->bandcfg));
if (tlv->chan_number > MAX_CHANNELS_BG) {
tlv->bandcfg.chanBand = BAND_5GHZ;
}
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "Band") == 0) {
if (is_input_valid(BAND, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
if (channel_band_tlv == NULL) {
printf("ERR: Channel parameter should be specified before Band\n");
ret = UAP_FAILURE;
goto done;
}
/* If band is provided, clear previous value of band */
channel_band_tlv->bandcfg.chanBand = BAND_2GHZ;
if (atoi(args[1]) == 0) {
band = BAND_B | BAND_G;
} else {
channel_band_tlv->bandcfg.chanBand = BAND_5GHZ;
band = BAND_A;
}
}
if (strcmp(args[0], "AP_MAC") == 0) {
tlvbuf_ap_mac_address *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_ap_mac_address);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append ap_mac TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_ap_mac_address *)(buffer + cmd_len);
cmd_len += tlv_len;
cmd_buf->action = ACTION_SET;
tlv->tag = MRVL_AP_MAC_ADDRESS_TLV_ID;
tlv->length = ETH_ALEN;
if ((ret =
mac2raw(args[1],
tlv->ap_mac_addr)) != UAP_SUCCESS) {
printf("ERR: %s Address \n",
ret ==
UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
ret = UAP_FAILURE;
goto done;
}
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "Rate") == 0) {
if (is_input_valid(RATE, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
printf("ERR: Invalid Rate input\n");
ret = UAP_FAILURE;
goto done;
}
tlvbuf_rates *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_rates) + arg_num - 1;
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append rates TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_rates *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_RATES_TLV_ID;
tlv->length = arg_num - 1;
for (i = 0; i < tlv->length; i++) {
rate[i] = tlv->operational_rates[i] =
(t_u8)A2HEXDECIMAL(args[i + 1]);
}
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "TxPowerLevel") == 0) {
if (is_input_valid(TXPOWER, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
printf("ERR:Invalid TxPowerLevel \n");
ret = UAP_FAILURE;
goto done;
} else {
tlvbuf_tx_power *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_tx_power);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append tx power level TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_tx_power *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_TX_POWER_TLV_ID;
tlv->length = 1;
tlv->tx_power_dbm = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
}
if (strcmp(args[0], "BroadcastSSID") == 0) {
if (is_input_valid(BROADCASTSSID, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_bcast_ssid_ctl *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_bcast_ssid_ctl);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append SSID broadcast control TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_bcast_ssid_ctl *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_BCAST_SSID_CTL_TLV_ID;
tlv->length = 1;
tlv->bcast_ssid_ctl = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "RTSThreshold") == 0) {
if (is_input_valid(RTSTHRESH, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_rts_threshold *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_rts_threshold);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append RTS threshold TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_rts_threshold *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_RTS_THRESHOLD_TLV_ID;
tlv->length = 2;
tlv->rts_threshold = (t_u16)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->rts_threshold =
uap_cpu_to_le16(tlv->rts_threshold);
}
if (strcmp(args[0], "FragThreshold") == 0) {
if (is_input_valid(FRAGTHRESH, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_frag_threshold *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_frag_threshold);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append Fragmentation threshold TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_frag_threshold *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_FRAG_THRESHOLD_TLV_ID;
tlv->length = 2;
tlv->frag_threshold = (t_u16)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->frag_threshold =
uap_cpu_to_le16(tlv->frag_threshold);
}
if (strcmp(args[0], "DTIMPeriod") == 0) {
if (is_input_valid(DTIMPERIOD, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_dtim_period *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_dtim_period);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append DTIM period TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_dtim_period *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_DTIM_PERIOD_TLV_ID;
tlv->length = 1;
tlv->dtim_period = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "RSNReplayProtection") == 0) {
if (is_input_valid(RSNREPLAYPROT, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_rsn_replay_prot *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_rsn_replay_prot);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append RSN replay protection TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_rsn_replay_prot *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_RSN_REPLAY_PROT_TLV_ID;
tlv->length = 1;
tlv->rsn_replay_prot = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "TxBeaconRate") == 0) {
if (is_input_valid(TXBEACONRATE, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tx_beacon_rate = (t_u16)A2HEXDECIMAL(args[1]);
}
if (strcmp(args[0], "MCBCdataRate") == 0) {
if (is_input_valid(MCBCDATARATE, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
mcbc_data_rate = (t_u16)A2HEXDECIMAL(args[1]);
}
if (strcmp(args[0], "PktFwdCtl") == 0) {
if (is_input_valid(PKTFWD, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_pkt_fwd_ctl *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_pkt_fwd_ctl);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append packet forwarding control TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_pkt_fwd_ctl *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_PKT_FWD_CTL_TLV_ID;
tlv->length = 1;
tlv->pkt_fwd_ctl = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "StaAgeoutTimer") == 0) {
if (is_input_valid
(STAAGEOUTTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_sta_ageout_timer *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_sta_ageout_timer);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append STA ageout timer TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_sta_ageout_timer *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_STA_AGEOUT_TIMER_TLV_ID;
tlv->length = 4;
tlv->sta_ageout_timer_ms = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->sta_ageout_timer_ms =
uap_cpu_to_le32(tlv->sta_ageout_timer_ms);
}
if (strcmp(args[0], "PSStaAgeoutTimer") == 0) {
if (is_input_valid
(PSSTAAGEOUTTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_ps_sta_ageout_timer *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_ps_sta_ageout_timer);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append PS STA ageout timer TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_ps_sta_ageout_timer *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_PS_STA_AGEOUT_TIMER_TLV_ID;
tlv->length = 4;
tlv->ps_sta_ageout_timer_ms = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->ps_sta_ageout_timer_ms =
uap_cpu_to_le32(tlv->ps_sta_ageout_timer_ms);
}
if (strcmp(args[0], "AuthMode") == 0) {
if (is_input_valid(AUTHMODE, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_auth_mode *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_auth_mode);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append auth mode TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_auth_mode *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_AUTH_TLV_ID;
tlv->length = 1;
tlv->auth_mode = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "KeyIndex") == 0) {
if (arg_num == 1) {
printf("KeyIndex is blank!\n");
ret = UAP_FAILURE;
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal KeyIndex parameter. Must be either '0', '1', '2', or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
keyindex = atoi(args[1]);
if ((keyindex < 0) || (keyindex > 3)) {
printf("ERR:Illegal KeyIndex parameter. Must be either '0', '1', '2', or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
}
}
if (strncmp(args[0], "Key_", 4) == 0) {
if (arg_num == 1) {
printf("ERR:%s is blank!\n", args[0]);
ret = UAP_FAILURE;
goto done;
} else {
tlvbuf_wep_key *tlv = NULL;
int key_len = 0;
if (args[1][0] == '"') {
if ((strlen(args[1]) != 2) &&
(strlen(args[1]) != 7) &&
(strlen(args[1]) != 15)) {
printf("ERR:Wrong key length!\n");
ret = UAP_FAILURE;
goto done;
}
key_len = strlen(args[1]) - 2;
} else {
if ((strlen(args[1]) != 0) &&
(strlen(args[1]) != 10) &&
(strlen(args[1]) != 26)) {
printf("ERR:Wrong key length!\n");
ret = UAP_FAILURE;
goto done;
}
if (UAP_FAILURE == ishexstring(args[1])) {
printf("ERR:Only hex digits are allowed when key length is 10 or 26\n");
ret = UAP_FAILURE;
goto done;
}
key_len = strlen(args[1]) / 2;
}
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_wep_key) + key_len;
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append WEP key configurations TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_wep_key *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_WEP_KEY_TLV_ID;
tlv->length = key_len + 2;
if (strcmp(args[0], "Key_0") == 0) {
tlv->key_index = 0;
} else if (strcmp(args[0], "Key_1") == 0) {
tlv->key_index = 1;
} else if (strcmp(args[0], "Key_2") == 0) {
tlv->key_index = 2;
} else if (strcmp(args[0], "Key_3") == 0) {
tlv->key_index = 3;
}
if (keyindex == tlv->key_index) {
tlv->is_default = 1;
} else {
tlv->is_default = 0;
}
if (args[1][0] == '"') {
memcpy(tlv->key, &args[1][1],
strlen(args[1]) - 2);
} else {
string2raw(args[1], tlv->key);
}
endian_convert_tlv_header_out(tlv);
}
}
if (strcmp(args[0], "PSK") == 0) {
if (arg_num == 1) {
printf("ERR:PSK is blank!\n");
ret = UAP_FAILURE;
goto done;
} else {
tlvbuf_wpa_passphrase *tlv = NULL;
if (args[1][0] == '"') {
args[1]++;
}
if (args[1][strlen(args[1]) - 1] == '"') {
args[1][strlen(args[1]) - 1] = '\0';
}
tlv_len =
sizeof(tlvbuf_wpa_passphrase) +
strlen(args[1]);
if (strlen(args[1]) > MAX_WPA_PASSPHRASE_LENGTH) {
printf("ERR:PSK too long.\n");
ret = UAP_FAILURE;
goto done;
}
if (strlen(args[1]) < MIN_WPA_PASSPHRASE_LENGTH) {
printf("ERR:PSK too short.\n");
ret = UAP_FAILURE;
goto done;
}
if (strlen(args[1]) ==
MAX_WPA_PASSPHRASE_LENGTH) {
if (UAP_FAILURE == ishexstring(args[1])) {
printf("ERR:Only hex digits are allowed when passphrase's length is 64\n");
ret = UAP_FAILURE;
goto done;
}
}
/* Append a new TLV */
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append WPA passphrase TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_wpa_passphrase *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_WPA_PASSPHRASE_TLV_ID;
tlv->length = strlen(args[1]);
memcpy(tlv->passphrase, args[1], tlv->length);
endian_convert_tlv_header_out(tlv);
}
}
if (strcmp(args[0], "Protocol") == 0) {
if (is_input_valid(PROTOCOL, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
protocol = (t_u16)atoi(args[1]);
}
if ((strcmp(args[0], "PairwiseCipher") == 0) ||
(strcmp(args[0], "GroupCipher") == 0)) {
printf("ERR:PairwiseCipher and GroupCipher are not supported.\n" " Please configure pairwise cipher using parameters PwkCipherWPA or PwkCipherWPA2\n" " and group cipher using GwkCipher in the config file.\n");
ret = UAP_FAILURE;
goto done;
}
if ((protocol == PROTOCOL_NO_SECURITY) ||
(protocol == PROTOCOL_STATIC_WEP)) {
if ((strcmp(args[0], "PwkCipherWPA") == 0) ||
(strcmp(args[0], "PwkCipherWPA2") == 0)
|| (strcmp(args[0], "GwkCipher") == 0)) {
printf("ERR:Pairwise cipher and group cipher should not be defined for Open and WEP mode.\n");
ret = UAP_FAILURE;
goto done;
}
}
if (strcmp(args[0], "PwkCipherWPA") == 0) {
if (arg_num == 1) {
printf("ERR:PwkCipherWPA is blank!\n");
ret = UAP_FAILURE;
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal PwkCipherWPA parameter. Must be either bit '2' or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
if (atoi(args[1]) & ~CIPHER_BITMAP) {
printf("ERR:Illegal PwkCipherWPA parameter. Must be either bit '2' or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
pwkcipher_wpa = atoi(args[1]);
if (enable_11n &&
protocol != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS ==
get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]
&& (atoi(args[1]) ==
CIPHER_TKIP)) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
ret = UAP_FAILURE;
goto done;
}
}
}
}
}
if (strcmp(args[0], "PwkCipherWPA2") == 0) {
if (arg_num == 1) {
printf("ERR:PwkCipherWPA2 is blank!\n");
ret = UAP_FAILURE;
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal PwkCipherWPA2 parameter. Must be either bit '2' or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
if (atoi(args[1]) & ~CIPHER_BITMAP) {
printf("ERR:Illegal PwkCipherWPA2 parameter. Must be either bit '2' or '3'.\n");
ret = UAP_FAILURE;
goto done;
}
pwkcipher_wpa2 = atoi(args[1]);
if (enable_11n &&
protocol != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS ==
get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]
&& (atoi(args[1]) ==
CIPHER_TKIP)) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
ret = UAP_FAILURE;
goto done;
}
}
}
}
}
if (strcmp(args[0], "GwkCipher") == 0) {
if (is_input_valid(GWK_CIPHER, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
gwkcipher = atoi(args[1]);
}
if (strcmp(args[0], "GroupRekeyTime") == 0) {
if (is_input_valid
(GROUPREKEYTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_group_rekey_timer *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_group_rekey_timer);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append group rekey timer TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_group_rekey_timer *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_GRP_REKEY_TIME_TLV_ID;
tlv->length = 4;
tlv->group_rekey_time_sec = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->group_rekey_time_sec =
uap_cpu_to_le32(tlv->group_rekey_time_sec);
}
if (strcmp(args[0], "MaxStaNum") == 0) {
if (is_input_valid(MAXSTANUM, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
if (get_max_sta_num_supported(&max_sta_num_supported) ==
UAP_FAILURE) {
ret = UAP_FAILURE;
goto done;
}
if (atoi(args[1]) > max_sta_num_supported) {
printf("ERR: MAX_STA_NUM must be less than %d\n", max_sta_num_supported);
ret = UAP_FAILURE;
goto done;
}
tlvbuf_max_sta_num *tlv = NULL;
/* Append a new TLV */
tlv_len =
sizeof(tlvbuf_max_sta_num) -
sizeof(tlv->max_sta_num_supported);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot realloc max station number TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_max_sta_num *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_MAX_STA_CNT_TLV_ID;
tlv->length = 2;
tlv->max_sta_num_configured = (t_u16)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->max_sta_num_configured =
uap_cpu_to_le16(tlv->max_sta_num_configured);
}
if (strcmp(args[0], "Retrylimit") == 0) {
if (is_input_valid(RETRYLIMIT, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_retry_limit *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_retry_limit);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot realloc retry limit TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_retry_limit *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_RETRY_LIMIT_TLV_ID;
tlv->length = 1;
tlv->retry_limit = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "PairwiseUpdateTimeout") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_eapol_pwk_hsk_timeout *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_eapol_pwk_hsk_timeout);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append pairwise update timeout TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_eapol_pwk_hsk_timeout *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_EAPOL_PWK_HSK_TIMEOUT_TLV_ID;
tlv->length = 4;
tlv->pairwise_update_timeout = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->pairwise_update_timeout =
uap_cpu_to_le32(tlv->pairwise_update_timeout);
}
if (strcmp(args[0], "PairwiseHandshakeRetries") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_eapol_pwk_hsk_retries *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_eapol_pwk_hsk_retries);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append pairwise handshake retries TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_eapol_pwk_hsk_retries *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_EAPOL_PWK_HSK_RETRIES_TLV_ID;
tlv->length = 4;
tlv->pwk_retries = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->pwk_retries = uap_cpu_to_le32(tlv->pwk_retries);
}
if (strcmp(args[0], "GroupwiseUpdateTimeout") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_eapol_gwk_hsk_timeout *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_eapol_gwk_hsk_timeout);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append groupwise update timeout TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_eapol_gwk_hsk_timeout *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_EAPOL_GWK_HSK_TIMEOUT_TLV_ID;
tlv->length = 4;
tlv->groupwise_update_timeout = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->groupwise_update_timeout =
uap_cpu_to_le32(tlv->groupwise_update_timeout);
}
if (strcmp(args[0], "GroupwiseHandshakeRetries") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
ret = UAP_FAILURE;
goto done;
}
tlvbuf_eapol_gwk_hsk_retries *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_eapol_gwk_hsk_retries);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append groupwise handshake retries TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_eapol_gwk_hsk_retries *)(buffer +
cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_EAPOL_GWK_HSK_RETRIES_TLV_ID;
tlv->length = 4;
tlv->gwk_retries = (t_u32)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
tlv->gwk_retries = uap_cpu_to_le32(tlv->gwk_retries);
}
if (strcmp(args[0], "Enable11n") == 0) {
if ((ISDIGIT(args[1]) != UAP_SUCCESS) ||
(atoi(args[1]) < 0) || (atoi(args[1]) > 1)) {
printf("ERR: Invalid Enable11n value\n");
ret = UAP_FAILURE;
goto done;
}
tlvbuf_htcap_t *tlv = NULL;
enable_11n = atoi(args[1]);
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS != get_sys_cfg_11n(&htcap)) {
printf("ERR: Reading current 11n configuration.\n");
ret = UAP_FAILURE;
goto done;
}
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_htcap_t);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append HT Cap TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_htcap_t *)(buffer + cmd_len);
tlv_offset_11n = cmd_len;
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = HT_CAPABILITY_TLV_ID;
tlv->length = sizeof(HTCap_t);
memcpy(&tlv->ht_cap, &htcap, sizeof(HTCap_t));
if (enable_11n == 1) {
/* enable mcs rate */
tlv->ht_cap.supported_mcs_set[0] =
DEFAULT_MCS_SET_0;
tlv->ht_cap.supported_mcs_set[4] =
DEFAULT_MCS_SET_4;
if (0 == get_fw_info(&fw)) {
if ((fw.hw_dev_mcs_support & 0x0f) >= 2)
tlv->ht_cap.
supported_mcs_set[1] =
DEFAULT_MCS_SET_1;
}
} else {
/* disable mcs rate */
tlv->ht_cap.supported_mcs_set[0] = 0;
tlv->ht_cap.supported_mcs_set[4] = 0;
tlv->ht_cap.supported_mcs_set[1] = 0;
}
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "HTCapInfo") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before HTCapInfo.\n");
ret = UAP_FAILURE;
goto done;
}
if ((IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE) ||
((((t_u16)A2HEXDECIMAL(args[1])) &
(~HT_CAP_CONFIG_MASK)) != HT_CAP_CHECK_MASK)) {
printf("ERR: Invalid HTCapInfo value\n");
ret = UAP_FAILURE;
goto done;
}
/* Find HT tlv pointer in buffer and set HTCapInfo */
tlvbuf_htcap_t *tlv = NULL;
tlv = (tlvbuf_htcap_t *)(buffer + tlv_offset_11n);
tlv->ht_cap.ht_cap_info =
DEFAULT_HT_CAP_VALUE & ~HT_CAP_CONFIG_MASK;
tlv->ht_cap.ht_cap_info |=
(t_u16)A2HEXDECIMAL(args[1]) &
HT_CAP_CONFIG_MASK;
tlv->ht_cap.ht_cap_info =
uap_cpu_to_le16(tlv->ht_cap.ht_cap_info);
}
if (strcmp(args[0], "AMPDU") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before AMPDU.\n");
ret = UAP_FAILURE;
goto done;
}
if ((IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE) ||
((A2HEXDECIMAL(args[1])) > AMPDU_CONFIG_MASK)) {
printf("ERR: Invalid AMPDU value\n");
ret = UAP_FAILURE;
goto done;
}
/* Find HT tlv pointer in buffer and set AMPDU */
tlvbuf_htcap_t *tlv = NULL;
tlv = (tlvbuf_htcap_t *)(buffer + tlv_offset_11n);
tlv->ht_cap.ampdu_param =
(t_u8)A2HEXDECIMAL(args[1]) & AMPDU_CONFIG_MASK;
}
if (strcmp(args[0], "HT_MCS_MAP") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before HT_MCS_MAP.\n");
ret = UAP_FAILURE;
goto done;
}
if (0 == get_fw_info(&fw)) {
/* Check upper nibble of MCS support value
* and block MCS_SET_1 when 2X2 is not supported
* by the underlying hardware */
if (((fw.hw_dev_mcs_support & 0xf0) <
STREAM_2X2_MASK) &&
(A2HEXDECIMAL(args[1]) & MCS_SET_1_MASK)) {
printf("ERR: Invalid HT_MCS_MAP\n");
goto done;
}
}
/* Find HT tlv pointer in buffer and set supported MCS set */
tlvbuf_htcap_t *tlv = NULL;
tlv = (tlvbuf_htcap_t *)(buffer + tlv_offset_11n);
supported_mcs_set = (t_u32)A2HEXDECIMAL(args[1]);
supported_mcs_set = uap_cpu_to_le32(supported_mcs_set);
memcpy(tlv->ht_cap.supported_mcs_set,
&supported_mcs_set, sizeof(t_u32));
}
if (strcmp(args[0], "Enable2040Coex") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0) ||
(atoi(args[1]) > 1)) {
printf("ERR: Invalid Enable2040Coex value\n");
ret = UAP_FAILURE;
goto done;
}
tlvbuf_2040_coex *tlv = NULL;
/* Append a new TLV */
tlv_len = sizeof(tlvbuf_2040_coex);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append 2040 coex TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_2040_coex *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_2040_BSS_COEX_CONTROL_TLV_ID;
tlv->length = 1;
tlv->enable = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
if (strcmp(args[0], "PreambleType") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0) ||
(atoi(args[1]) > 2)) {
printf("ERR: Invalid PreambleType value\n");
ret = UAP_FAILURE;
goto done;
}
/* Append a new TLV */
tlvbuf_preamble_ctl *tlv = NULL;
tlv_len = sizeof(tlvbuf_preamble_ctl);
tmp_buffer = realloc(buffer, cmd_len + tlv_len);
if (!tmp_buffer) {
printf("ERR:Cannot append preamble type TLV!\n");
ret = UAP_FAILURE;
goto done;
} else {
buffer = tmp_buffer;
tmp_buffer = NULL;
}
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_preamble_ctl *)(buffer + cmd_len);
cmd_len += tlv_len;
/* Set TLV fields */
tlv->tag = MRVL_PREAMBLE_CTL_TLV_ID;
tlv->length = 1;
tlv->preamble_type = (t_u8)atoi(args[1]);
endian_convert_tlv_header_out(tlv);
}
#if DEBUG
if (cmd_len != 0) {
hexdump("Command Buffer", (void *)cmd_buf, cmd_len,
' ');
}
#endif
}
done:
fclose(config_file);
if (buffer)
free(buffer);
if (line)
free(line);
return ret;
}
/**
* @brief Get band from current channel
* @param band
* @return UAP_SUCCESS/UAP_FAILURE
*/
static int
get_band(int *band)
{
apcmdbuf_sys_configure *cmd_buf = NULL;
tlvbuf_channel_config *tlv = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len;
int ret = UAP_SUCCESS;
/* Initialize the command length */
cmd_len =
sizeof(apcmdbuf_sys_configure) + sizeof(tlvbuf_channel_config);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(cmd_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
ret = UAP_FAILURE;
goto done;
}
memset(buffer, 0, cmd_len);
/* Locate headers */
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_channel_config *)(buffer +
sizeof(apcmdbuf_sys_configure));
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
tlv->tag = MRVL_CHANNELCONFIG_TLV_ID;
tlv->length = sizeof(tlvbuf_channel_config) - TLVHEADER_LEN;
cmd_buf->action = ACTION_GET;
endian_convert_tlv_header_out(tlv);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, cmd_len);
endian_convert_tlv_header_in(tlv);
if (ret == UAP_SUCCESS) {
/* Verify response */
if ((cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) ||
(tlv->tag != MRVL_CHANNELCONFIG_TLV_ID)) {
printf("ERR:Corrupted response! cmd_code=%x, Tlv->tag=%x\n", cmd_buf->cmd_code, tlv->tag);
ret = UAP_FAILURE;
goto done;
}
if (cmd_buf->result == CMD_SUCCESS) {
if (tlv->chan_number > MAX_CHANNELS_BG)
*band = BAND_A;
else
*band = BAND_B | BAND_G;
} else {
printf("ERR:Could not get band!\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR:Command sending failed!\n");
ret = UAP_FAILURE;
goto done;
}
done:
if (buffer)
free(buffer);
return ret;
}
/**
* @brief Show usage information for the cfg_80211d command
*
* $return N/A
*/
void
print_apcmd_cfg_80211d_usage(void)
{
printf("\nUsage: cfg_80211d <state 0/1> <country Country_code> \n");
return;
}
/**
* @brief Show usage information for the uap_stats command
*
* $return N/A
*/
void
print_apcmd_uap_stats(void)
{
printf("Usage: uap_stats \n");
return;
}
/**
* SNMP MIB OIDs Table
*/
static oids_table snmp_oids[] = {
{0x0b, 4, "dot11LocalTKIPMICFailures"},
{0x0c, 4, "dot11CCMPDecryptErrors"},
{0x0d, 4, "dot11WEPUndecryptableCount"},
{0x0e, 4, "dot11WEPICVErrorCount"},
{0x0f, 4, "dot11DecryptFailureCount"},
{0x12, 4, "dot11FailedCount"},
{0x13, 4, "dot11RetryCount"},
{0x14, 4, "dot11MultipleRetryCount"},
{0x15, 4, "dot11FrameDuplicateCount"},
{0x16, 4, "dot11RTSSuccessCount"},
{0x17, 4, "dot11RTSFailureCount"},
{0x18, 4, "dot11ACKFailureCount"},
{0x19, 4, "dot11ReceivedFragmentCount"},
{0x1a, 4, "dot11MulticastReceivedFrameCount"},
{0x1b, 4, "dot11FCSErrorCount"},
{0x1c, 4, "dot11TransmittedFrameCount"},
{0x1d, 4, "dot11RSNATKIPCounterMeasuresInvoked"},
{0x1e, 4, "dot11RSNA4WayHandshakeFailures"},
{0x1f, 4, "dot11MulticastTransmittedFrameCount"}
};
/**
* @brief Get uAP stats
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
*
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_uap_stats(int argc, char *argv[])
{
t_u8 no_of_oids = sizeof(snmp_oids) / sizeof(snmp_oids[0]);
t_u16 i, j;
int size;
apcmdbuf_snmp_mib *cmd_buf = NULL;
t_u8 *buf = NULL;
tlvbuf_header *tlv = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int opt;
t_u16 oid_size, byte2 = 0;
t_u32 byte4 = 0;
int ret = UAP_SUCCESS;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_apcmd_uap_stats();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
if (argc) {
printf("Error: Invalid Input\n");
print_apcmd_uap_stats();
return UAP_FAILURE;
}
/** Command Header */
cmd_len += sizeof(apcmdbuf_snmp_mib);
for (i = 0; i < no_of_oids; i++) {
/**
* Size of Oid + Oid_value + Oid_size
*/
cmd_len += snmp_oids[i].len + sizeof(tlvbuf_header);
}
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate Headers */
cmd_buf = (apcmdbuf_snmp_mib *)buf;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->cmd_code = HostCmd_SNMP_MIB;
cmd_buf->action = uap_cpu_to_le16(ACTION_GET);
tlv = (tlvbuf_header *)((t_u8 *)cmd_buf + sizeof(apcmdbuf_snmp_mib));
/* Add oid, oid_size and oid_value for each OID */
for (i = 0; i < no_of_oids; i++) {
/** Copy Index as Oid */
tlv->type = uap_cpu_to_le16(snmp_oids[i].type);
/** Copy its size */
tlv->len = uap_cpu_to_le16(snmp_oids[i].len);
/** Next TLV */
tlv = (tlvbuf_header *)&(tlv->data[snmp_oids[i].len]);
}
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
tlv = (tlvbuf_header *)((t_u8 *)cmd_buf +
sizeof(apcmdbuf_snmp_mib));
size = cmd_buf->size - (sizeof(apcmdbuf_snmp_mib) -
BUF_HEADER_SIZE);
while ((unsigned int)size >= sizeof(tlvbuf_header)) {
tlv->type = uap_le16_to_cpu(tlv->type);
for (i = 0; i < no_of_oids; i++) {
if (snmp_oids[i].type == tlv->type) {
printf("%s: ",
snmp_oids[i].name);
break;
}
}
oid_size = uap_le16_to_cpu(tlv->len);
switch (oid_size) {
case 1:
printf("%d",
(unsigned int)tlv->data[0]);
break;
case 2:
memcpy(&byte2, &tlv->data[0],
sizeof(oid_size));
printf("%d",
(unsigned int)
uap_le16_to_cpu(byte2));
break;
case 4:
memcpy(&byte4, &tlv->data[0],
sizeof(oid_size));
printf("%d",
(unsigned int)
uap_le32_to_cpu(byte4));
break;
default:
for (j = 0; j < oid_size; j++) {
printf("%d ",
(t_u8)tlv->data[j]);
}
break;
}
/** Next TLV */
tlv = (tlvbuf_header *)&(tlv->data[oid_size]);
size -= (sizeof(tlvbuf_header) + oid_size);
size = (size > 0) ? size : 0;
printf("\n");
}
} else {
printf("ERR:Command Response incorrect!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief parser for sys_cfg_80211d input
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @param output Stores indexes for "state, country"
* arguments
*
* @return NA
*
*/
static void
parse_input_80211d(int argc, char **argv, int output[2][2])
{
int i, j, k = 0;
char *keywords[2] = { "state", "country" };
for (i = 0; i < 2; i++)
output[i][0] = -1;
for (i = 0; i < argc; i++) {
for (j = 0; j < 2; j++) {
if (strcmp(argv[i], keywords[j]) == 0) {
output[j][1] = output[j][0] = i;
k = j;
break;
}
}
output[k][1] += 1;
}
}
/**
* @brief Set/Get 802.11D country information
*
* Usage: cfg_80211d state country_code
*
* State 0 or 1
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_cfg_80211d(int argc, char *argv[])
{
apcmdbuf_cfg_80211d *cmd_buf = NULL;
ieeetypes_subband_set_t *subband = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int output[2][2];
int ret = UAP_SUCCESS;
int opt;
int status = 0;
int i, j;
t_u8 state = 0;
char country[4] = { ' ', ' ', 0, 0 };
t_u8 sflag = 0, cflag = 0;
ieeetypes_subband_set_t sub_bands[MAX_SUB_BANDS];
t_u8 no_of_sub_band = 0;
int band;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_apcmd_cfg_80211d_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
if (argc) {
if (strcmp(argv[0], "state") && strcmp(argv[0], "country")) {
printf("ERR: Incorrect input. Either state or country is needed.");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
/** SET */
parse_input_80211d(argc, argv, output);
/** State */
if ((output[0][0] != -1) && (output[0][1] > output[0][0])) {
if ((output[0][1] - output[0][0]) != 2) {
printf("ERR: Invalid state inputs\n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
if (IS_HEX_OR_DIGIT(argv[output[0][0] + 1]) ==
UAP_FAILURE) {
printf("ERR: valid input for state are 0 or 1\n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
state = (t_u8)A2HEXDECIMAL(argv[output[0][0] + 1]);
if ((state != 0) && (state != 1)) {
printf("ERR: valid input for state are 0 or 1 \n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
sflag = 1;
}
/** Country */
if ((output[1][0] != -1) && (output[1][1] > output[1][0])) {
if ((output[1][1] - output[1][0]) != 2) {
printf("ERR: Invalid country inputs\n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
if ((strlen(argv[output[1][0] + 1]) > 3) ||
(strlen(argv[output[1][0] + 1]) == 0)) {
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
/* Only 2 characters of country code are copied here as indoor/outdoor
* conditions are not handled in domain file */
strncpy(country, argv[output[1][0] + 1], 2);
for (i = 0; (unsigned int)i < strlen(country); i++) {
if ((country[i] < 'A') || (country[i] > 'z')) {
printf("Invalid Country Code\n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
if (country[i] > 'Z')
country[i] = country[i] - 'a' + 'A';
}
cflag = 1;
if (!get_band(&band)) {
printf("ERR:couldn't get band from channel!\n");
return UAP_FAILURE;
}
/** Get domain information from the file */
no_of_sub_band =
parse_domain_file(country, band, sub_bands,
NULL);
if (no_of_sub_band == UAP_FAILURE) {
printf("Parsing Failed\n");
return UAP_FAILURE;
}
}
if (get_bss_status(&status) != UAP_SUCCESS) {
printf("ERR:Cannot get current bss status!\n");
return UAP_FAILURE;
}
if (status == UAP_BSS_START) {
printf("ERR: 11d status can not be changed after BSS start!\n");
return UAP_FAILURE;
}
}
if (argc && !cflag && !sflag) {
printf("ERR: Invalid input\n");
print_apcmd_cfg_80211d_usage();
return UAP_FAILURE;
}
if (sflag && !cflag) {
/**
* Update MIB only and return
*/
if (sg_snmp_mib
(ACTION_SET, OID_80211D_ENABLE, sizeof(state),
&state) == UAP_SUCCESS) {
printf("802.11d %sd \n", state ? "enable" : "disable");
return UAP_SUCCESS;
} else {
return UAP_FAILURE;
}
}
cmd_len = sizeof(apcmdbuf_cfg_80211d);
if (cflag) {
cmd_len += no_of_sub_band * sizeof(ieeetypes_subband_set_t);
} else {
/** Get */
cmd_len += MAX_SUB_BANDS * sizeof(ieeetypes_subband_set_t);
}
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_cfg_80211d *)buf;
cmd_len = argc ? cmd_len :
/** Set */
(sizeof(apcmdbuf_cfg_80211d) - sizeof(domain_param_t));
/** Get */
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->action = argc ? ACTION_SET : ACTION_GET;
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
if (cflag) {
/* third character of country code is copied here as indoor/outdoor
* condition is not supported in domain file*/
strncpy(country, argv[output[1][0] + 1], sizeof(country) - 1);
for (i = 0; (unsigned int)i < strlen(country); i++) {
if ((country[i] < 'A') || (country[i] > 'z')) {
printf("Invalid Country Code\n");
print_apcmd_cfg_80211d_usage();
free(buf);
return UAP_FAILURE;
}
if (country[i] > 'Z')
country[i] = country[i] - 'a' + 'A';
}
cmd_buf->domain.tag = uap_cpu_to_le16(TLV_TYPE_DOMAIN);
cmd_buf->domain.length = uap_cpu_to_le16(sizeof(domain_param_t)
- BUF_HEADER_SIZE
+
(no_of_sub_band *
sizeof
(ieeetypes_subband_set_t)));
memset(cmd_buf->domain.country_code, ' ',
sizeof(cmd_buf->domain.country_code));
memcpy(cmd_buf->domain.country_code, country, strlen(country));
memcpy(cmd_buf->domain.subband, sub_bands,
no_of_sub_band * sizeof(ieeetypes_subband_set_t));
}
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
if (argc) {
printf("Set executed successfully\n");
if (sflag) {
if (sg_snmp_mib
(ACTION_SET, OID_80211D_ENABLE,
sizeof(state),
&state) == UAP_SUCCESS) {
printf("802.11d %sd \n",
state ? "enable" :
"disable");
}
}
} else {
j = uap_le16_to_cpu(cmd_buf->domain.length);
if (sg_snmp_mib
(ACTION_GET, OID_80211D_ENABLE,
sizeof(state), &state)
== UAP_SUCCESS) {
printf("State = %sd\n",
state ? "enable" : "disable");
}
if (cmd_buf->domain.country_code[0] ||
cmd_buf->domain.country_code[1] ||
cmd_buf->domain.country_code[2]) {
printf("Country string = %c%c%c",
cmd_buf->domain.country_code[0],
cmd_buf->domain.country_code[1],
cmd_buf->domain.country_code[2]);
j -= sizeof(cmd_buf->domain.
country_code);
subband =
(ieeetypes_subband_set_t *)
cmd_buf->domain.subband;
printf("\nSub-band info=");
printf("\t(1st, #chan, MAX-power) \n");
for (i = 0; i < (j / 3); i++) {
printf("\t\t(%d, \t%d, \t%d dbm)\n", subband->first_chan, subband->no_of_chan, subband->max_tx_pwr);
subband++;
}
}
}
} else {
printf("ERR:Command Response incorrect!\n");
if (argc)
printf("11d info is allowed to set only before bss start.\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief Creates a sys_config request and sends to the driver
*
* Usage: "Usage : sys_config [CONFIG_FILE]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sys_config(int argc, char *argv[])
{
apcmdbuf_sys_configure *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len;
t_u16 buf_len;
int ret = UAP_SUCCESS;
int opt;
char **argv_dummy = NULL;
ps_mgmt pm;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sys_config_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 1) {
printf("ERR:Too many arguments.\n");
print_sys_config_usage();
return UAP_FAILURE;
}
if (argc == 1) {
/* Read profile and send command to firmware */
ret = apcmd_sys_config_profile(argc, argv);
return ret;
}
/** Query AP's setting */
buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
/* Alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Reset custom_ie_present flag */
custom_ie_present = 0;
/* Reset max_mgmt_ie_print flag */
max_mgmt_ie_print = 0;
/* Locate headers */
cmd_len = sizeof(apcmdbuf_sys_configure);
cmd_buf = (apcmdbuf_sys_configure *)buf;
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response!\n");
free(buf);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
printf("AP settings:\n");
print_tlv(buf + sizeof(apcmdbuf_sys_configure),
cmd_buf->size -
sizeof(apcmdbuf_sys_configure) +
BUF_HEADER_SIZE);
if (apcmd_addbapara(1, argv_dummy) == UAP_FAILURE) {
printf("Couldn't get ADDBA parameters\n");
free(buf);
return UAP_FAILURE;
}
if (apcmd_aggrpriotbl(1, argv_dummy) == UAP_FAILURE) {
printf("Couldn't get AMSDU/AMPDU priority table\n");
free(buf);
return UAP_FAILURE;
}
if (apcmd_addbareject(1, argv_dummy) == UAP_FAILURE) {
printf("Couldn't get ADDBA reject table\n");
free(buf);
return UAP_FAILURE;
}
printf("\n802.11D setting:\n");
if (apcmd_cfg_80211d(1, argv_dummy) == UAP_FAILURE) {
free(buf);
return UAP_FAILURE;
}
if (!custom_ie_present) {
printf("\nCustom IE settings:\n");
if (apcmd_sys_cfg_custom_ie(1, argv_dummy) ==
UAP_FAILURE) {
free(buf);
return UAP_FAILURE;
}
}
} else {
printf("ERR:Could not retrieve system configure\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
memset(&pm, 0, sizeof(ps_mgmt));
ret = send_power_mode_ioctl(&pm, 0);
return ret;
}
/** Update domain info with given country and band
*
* @param country_80211d country to be set
* @param band band of operation
* @return UAP_SUCCESS/UAP_FAILURE
*/
static int
update_domain_info(char *country_80211d, int band)
{
apcmdbuf_cfg_80211d *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
ieeetypes_subband_set_t sub_bands[MAX_SUB_BANDS];
t_u8 no_of_sub_band = 0;
char country[4] = { ' ', ' ', 0, 0 };
int ret = UAP_SUCCESS;
t_u8 domain_code = 0;
rgn_dom_code_t *prgn_dom_code = NULL;
/* Get currently set country code from FW */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_cfg_80211d *)buf;
cmd_len = (sizeof(apcmdbuf_cfg_80211d) - sizeof(domain_param_t));
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->action = ACTION_GET;
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if ((ret == UAP_SUCCESS) && (cmd_buf->result == CMD_SUCCESS) &&
(cmd_buf->domain.country_code[0] ||
cmd_buf->domain.country_code[1] ||
cmd_buf->domain.country_code[2])) {
country[0] = cmd_buf->domain.country_code[0];
country[1] = cmd_buf->domain.country_code[1];
} else {
/* country_80211d will only be used if country code is not already set */
country[0] = country_80211d[0];
country[1] = country_80211d[1];
}
if (band == BAND_A)
printf("Enabling 11d for 11h operation and setting country code to %s\n", country);
cmd_len = sizeof(apcmdbuf_cfg_80211d);
/** Get domain information from the file */
no_of_sub_band =
parse_domain_file(country, band, sub_bands, &domain_code);
if (no_of_sub_band == UAP_FAILURE) {
printf("Parsing Failed\n");
ret = UAP_FAILURE;
goto done;
}
/* Copy third character of country code here */
if (cmd_buf->domain.country_code[2]) {
country[2] = cmd_buf->domain.country_code[2];
} else {
country[2] = country_80211d[2];
}
/* Set domain for this country code */
memset(buf, 0, buf_len);
cmd_len += no_of_sub_band * sizeof(ieeetypes_subband_set_t);
/* Locate headers */
cmd_buf = (apcmdbuf_cfg_80211d *)buf;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->action = ACTION_SET;
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
cmd_buf->domain.tag = uap_cpu_to_le16(TLV_TYPE_DOMAIN);
cmd_buf->domain.length = uap_cpu_to_le16(sizeof(domain_param_t)
- BUF_HEADER_SIZE
+
(no_of_sub_band *
sizeof
(ieeetypes_subband_set_t)));
memset(cmd_buf->domain.country_code, ' ',
sizeof(cmd_buf->domain.country_code));
memcpy(cmd_buf->domain.country_code, country, strlen(country));
memcpy(cmd_buf->domain.subband, sub_bands,
no_of_sub_band * sizeof(ieeetypes_subband_set_t));
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS) {
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR:Command Response incorrect!\n");
printf("11d info is allowed to set only before bss start.\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR:Command sending failed!\n");
}
if ((band == BAND_A) && domain_code) {
/* Send 11D_CMD a second time, with reg_dom_code TLV appended.
* Use hostcmd instead of re-route. */
cmd_len = cmd_buf->size + BUF_HEADER_SIZE;
prgn_dom_code = (rgn_dom_code_t *)((t_u8 *)cmd_buf + cmd_len);
cmd_len += sizeof(rgn_dom_code_t);
cmd_buf->size += sizeof(rgn_dom_code_t);
#if DEBUG
uap_printf(MSG_DEBUG,
"Adding Region Domain Code TLV. Domain_code=%d\n",
domain_code);
#endif
prgn_dom_code->tag =
uap_cpu_to_le16(MRVL_REGION_DOMAIN_CODE_TLV_ID);
prgn_dom_code->length = uap_cpu_to_le16(sizeof(rgn_dom_code_t)
- BUF_HEADER_SIZE);
prgn_dom_code->domain_code = domain_code;
/* Send the command */
uap_ioctl_no_reroute = 1;
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
uap_ioctl_no_reroute = 0;
if (ret == UAP_SUCCESS) {
if (cmd_buf->result != CMD_SUCCESS) {
printf("ERR:Command Response incorrect!\n");
printf("11d info is allowed to set only before bss start.\n");
ret = UAP_FAILURE;
goto done;
}
} else {
printf("ERR:Command sending failed!\n");
}
}
done:
if (buf)
free(buf);
return ret;
}
/**
* @brief Covert MCS Rate Bitmap to MCS Rate index
*
* @param rate_bitmap Pointer to rate bitmap
* @param size Size of the bitmap array
*
* @return Rate index
*/
int
get_rate_index_from_bitmap(t_u16 *rate_bitmap, int size)
{
int i;
for (i = 0; i < size * 8; i++) {
if (rate_bitmap[i / 16] & (1 << (i % 16))) {
return i;
}
}
return 0;
}
/**
* @brief Checks current system configuration
*
* @param buf pointer to TLV buffer
* @param len TLV buffer length
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
check_sys_config(t_u8 *buf, t_u16 len)
{
tlvbuf_header *pcurrent_tlv = (tlvbuf_header *)buf;
int tlv_buf_left = len;
t_u16 tlv_type;
t_u16 tlv_len;
tlvbuf_channel_config *channel_tlv = NULL;
tlvbuf_channel_list *chnlist_tlv = NULL;
tlvbuf_pwk_cipher *pwk_cipher_tlv = NULL;
tlvbuf_gwk_cipher *gwk_cipher_tlv = NULL;
tlvbuf_auth_mode *auth_tlv = NULL;
tlvbuf_protocol *protocol_tlv = NULL;
tlvbuf_wep_key *wep_key_tlv = NULL;
tlvbuf_wpa_passphrase *passphrase_tlv = NULL;
tlvbuf_rates *rates_tlv = NULL;
tlvbuf_mcbc_data_rate *mcbc_data_rate_tlv = NULL;
t_u16 protocol = 0;
t_u16 mcbc_data_rate = 0;
t_u16 op_rates_len = 0;
t_u8 acs_mode_enabled = 0;
t_u8 *cbuf = NULL;
apcmdbuf_cfg_80211d *cmd_buf = NULL;
t_u16 buf_len, cmd_len;
char country_80211d[4] = { 'U', 'S', ' ', 0 };
t_u8 state_80211h = 0;
int channel_tlv_band = BAND_B | BAND_G;
t_u8 secondary_ch_set = 0;
int scan_channels_band = BAND_B | BAND_G;
t_u8 state_80211d = 0;
t_u8 rate = 0;
t_u32 rate_bitmap = 0;
tlvbuf_htcap_t *ht_cap_tlv = NULL;
t_u16 enable_40Mhz = 0;
t_u16 enable_20Mhz_sgi = 0;
t_u16 enable_gf = 0;
t_u8 enable_11n = 0;
int flag = 0;
fw_info fw;
channel_list *pchan_list;
tlvbuf_tx_power *txpower_tlv = NULL;
int i = 0, ret = UAP_SUCCESS;
int pairwise_cipher_wpa = -1;
int pairwise_cipher_wpa2 = -1;
int group_cipher = -1;
int chan_list_len = 0;
int key_set = 0;
t_u8 channel = 0;
tx_rate_cfg_t tx_rate_config;
t_u32 mcs_rate_index = 0;
struct eth_priv_vhtcfg vhtcfg = { 0 };
#define BITMAP_RATE_1M 0x01
#define BITMAP_RATE_2M 0x02
#define BITMAP_RATE_5_5M 0x04
#define BITMAP_RATE_11M 0x8
#define B_RATE_MANDATORY 0x0f
if (pcurrent_tlv == NULL) {
printf("ERR: No TLV buffer available!\n");
return UAP_FAILURE;
}
ret = sg_snmp_mib(ACTION_GET, OID_80211D_ENABLE, sizeof(state_80211d),
&state_80211d);
buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
cbuf = (t_u8 *)malloc(buf_len);
if (!cbuf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(cbuf, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_cfg_80211d *)cbuf;
cmd_len = (sizeof(apcmdbuf_cfg_80211d) - sizeof(domain_param_t));
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->action = uap_cpu_to_le16(ACTION_GET);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS && cmd_buf->result == CMD_SUCCESS) {
if (cmd_buf->domain.country_code[0] ||
cmd_buf->domain.country_code[1] ||
cmd_buf->domain.country_code[2]) {
strncpy(country_80211d,
(char *)cmd_buf->domain.country_code,
COUNTRY_CODE_LEN);
}
}
free(cbuf);
/* get region code to handle special cases */
memset(&fw, 0, sizeof(fw));
if (get_fw_info(&fw)) {
printf("Could not get fw info!\n");
return UAP_FAILURE;
}
if (get_tx_rate_cfg(&tx_rate_config) == UAP_FAILURE) {
printf("Could not get tx_rate_cfg!\n");
return UAP_FAILURE;
}
while (tlv_buf_left >= (int)sizeof(tlvbuf_header) &&
(ret != UAP_FAILURE)) {
tlv_type = *(t_u8 *)&pcurrent_tlv->type;
tlv_type |= (*((t_u8 *)&pcurrent_tlv->type + 1) << 8);
tlv_len = *(t_u8 *)&pcurrent_tlv->len;
tlv_len |= (*((t_u8 *)&pcurrent_tlv->len + 1) << 8);
if ((sizeof(tlvbuf_header) + tlv_len) >
(unsigned int)tlv_buf_left) {
printf("wrong tlv: tlv_len=%d, tlv_buf_left=%d\n",
tlv_len, tlv_buf_left);
break;
}
switch (tlv_type) {
case MRVL_CHANNELCONFIG_TLV_ID:
channel_tlv = (tlvbuf_channel_config *)pcurrent_tlv;
channel = channel_tlv->chan_number;
if ((!state_80211d) &&
(channel_tlv->chan_number == MAX_CHANNELS_BG)
&&
(strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1)
== 0)
) {
printf("ERR: Invalid channel 14, 802.11d disabled, country code JP!\n");
return UAP_FAILURE;
}
if (channel_tlv->bandcfg.chanBand == BAND_5GHZ)
channel_tlv_band = BAND_A;
secondary_ch_set = channel_tlv->bandcfg.chan2Offset;
if (channel_tlv_band != BAND_A) {
/* When country code is not Japan, allow channels 5-11 for US and 5-13 for non-US
* only for secondary channel below */
if (secondary_ch_set == SEC_CHAN_BELOW) {
if (!strncmp
(country_80211d, "US",
COUNTRY_CODE_LEN - 1)) {
if (channel_tlv->chan_number >
DEFAULT_MAX_CHANNEL_BELOW) {
printf("ERR: Only channels 5-11 are allowed with secondary channel below for the US\n");
return UAP_FAILURE;
}
} else if (strncmp
(country_80211d, "JP",
COUNTRY_CODE_LEN - 1)) {
if (channel_tlv->chan_number >
DEFAULT_MAX_CHANNEL_BELOW_NON_US)
{
printf("ERR: Only channels 5-13 are allowed with secondary channel below for" "non-Japan countries!\n");
return UAP_FAILURE;
}
}
}
/* When country code is not Japan, allow channels 1-7 for US and 1-9 for non-US
* only for secondary channel above */
if (secondary_ch_set == SEC_CHAN_ABOVE) {
if (!strncmp
(country_80211d, "US",
COUNTRY_CODE_LEN - 1)) {
if (channel_tlv->chan_number >
DEFAULT_MAX_CHANNEL_ABOVE) {
printf("ERR: Only channels 1-7 are allowed with secondary channel above for the US\n");
return UAP_FAILURE;
}
} else if (strncmp
(country_80211d, "JP",
COUNTRY_CODE_LEN - 1)) {
if (channel_tlv->chan_number >
DEFAULT_MAX_CHANNEL_ABOVE_NON_US)
{
printf("ERR: Only channels 1-9 are allowed with secondary channel above for" "non-Japan countries!\n");
return UAP_FAILURE;
}
}
}
}
if (!(channel_tlv->bandcfg.scanMode == SCAN_MODE_ACS)) {
if (check_channel_validity_11d
(channel_tlv->chan_number, channel_tlv_band,
1) == UAP_FAILURE)
return UAP_FAILURE;
if (state_80211d) {
/* Set country code to JP if channel is 8 or 12 and band is 5GHZ */
if ((channel_tlv->chan_number <
MAX_CHANNELS_BG) &&
(channel_tlv_band == BAND_A))
strncpy(country_80211d, "JP ",
sizeof(country_80211d) -
1);
} else {
if ((channel_tlv_band == BAND_A) &&
((channel_tlv->chan_number == 8) ||
(channel_tlv->chan_number ==
12))) {
printf("ERR:Invalid band for given channel\n");
return UAP_FAILURE;
}
}
} else {
acs_mode_enabled = 1;
}
#define JP_REGION_0xFE 0xFE
if (fw.region_code == JP_REGION_0xFE &&
((channel_tlv->chan_number == 12) ||
(channel_tlv->chan_number == 13))) {
printf("ERR:Channel 12 or 13 is not allowed for region code 0xFE\n");
return UAP_FAILURE;
}
break;
case MRVL_CHANNELLIST_TLV_ID:
chnlist_tlv = (tlvbuf_channel_list *)pcurrent_tlv;
pchan_list =
(channel_list *) & (chnlist_tlv->chan_list);
if (tlv_len % sizeof(channel_list)) {
printf("ERR:Invalid Scan channel list TLV!\n");
return UAP_FAILURE;
}
chan_list_len = tlv_len / sizeof(channel_list);
for (i = 0; i < chan_list_len; i++) {
scan_channels_band = BAND_B | BAND_G;
if ((scan_channels_band != BAND_A) &&
(pchan_list->bandcfg.chanBand ==
BAND_5GHZ)) {
scan_channels_band = BAND_A;
}
if (check_channel_validity_11d
(pchan_list->chan_number,
scan_channels_band, 0) == UAP_FAILURE)
return UAP_FAILURE;
pchan_list++;
}
break;
case MRVL_TX_POWER_TLV_ID:
txpower_tlv = (tlvbuf_tx_power *)pcurrent_tlv;
if (state_80211d) {
if (check_tx_pwr_validity_11d
(txpower_tlv->tx_power_dbm) == UAP_FAILURE)
return UAP_FAILURE;
}
break;
case MRVL_CIPHER_PWK_TLV_ID:
pwk_cipher_tlv = (tlvbuf_pwk_cipher *)pcurrent_tlv;
pwk_cipher_tlv->protocol =
uap_le16_to_cpu(pwk_cipher_tlv->protocol);
if (pwk_cipher_tlv->protocol == PROTOCOL_WPA)
pairwise_cipher_wpa =
pwk_cipher_tlv->pairwise_cipher;
else if (pwk_cipher_tlv->protocol == PROTOCOL_WPA2)
pairwise_cipher_wpa2 =
pwk_cipher_tlv->pairwise_cipher;
break;
case MRVL_CIPHER_GWK_TLV_ID:
gwk_cipher_tlv = (tlvbuf_gwk_cipher *)pcurrent_tlv;
group_cipher = gwk_cipher_tlv->group_cipher;
break;
case MRVL_AUTH_TLV_ID:
auth_tlv = (tlvbuf_auth_mode *)pcurrent_tlv;
break;
case MRVL_PROTOCOL_TLV_ID:
protocol_tlv = (tlvbuf_protocol *)pcurrent_tlv;
protocol = uap_le16_to_cpu(protocol_tlv->protocol);
break;
case MRVL_WPA_PASSPHRASE_TLV_ID:
passphrase_tlv = (tlvbuf_wpa_passphrase *)pcurrent_tlv;
break;
case MRVL_WEP_KEY_TLV_ID:
wep_key_tlv = (tlvbuf_wep_key *)pcurrent_tlv;
if (wep_key_tlv->is_default) {
key_set = 1;
}
break;
case HT_CAPABILITY_TLV_ID:
ht_cap_tlv = (tlvbuf_htcap_t *)pcurrent_tlv;
ht_cap_tlv->ht_cap.ht_cap_info =
uap_le16_to_cpu(ht_cap_tlv->ht_cap.ht_cap_info);
if (ht_cap_tlv->ht_cap.supported_mcs_set[0]) {
enable_11n = 1;
enable_40Mhz =
IS_11N_40MHZ_ENABLED(ht_cap_tlv->ht_cap.
ht_cap_info);
enable_20Mhz_sgi =
IS_11N_20MHZ_SHORTGI_ENABLED
(ht_cap_tlv->ht_cap.ht_cap_info);
enable_gf =
IS_11N_GF_ENABLED(ht_cap_tlv->ht_cap.
ht_cap_info);
}
break;
case MRVL_RATES_TLV_ID:
rates_tlv = (tlvbuf_rates *)pcurrent_tlv;
op_rates_len = tlv_len;
break;
case MRVL_MCBC_DATA_RATE_TLV_ID:
mcbc_data_rate_tlv =
(tlvbuf_mcbc_data_rate *)pcurrent_tlv;
mcbc_data_rate =
uap_le16_to_cpu(mcbc_data_rate_tlv->
mcbc_datarate);
if (mcbc_data_rate &&
(is_mcbc_rate_valid((t_u8)mcbc_data_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid MCBC Data Rate \n");
return UAP_FAILURE;
}
break;
}
tlv_buf_left -= (sizeof(tlvbuf_header) + tlv_len);
pcurrent_tlv = (tlvbuf_header *)(pcurrent_tlv->data + tlv_len);
}
if ((protocol == PROTOCOL_STATIC_WEP) && !key_set) {
printf("ERR:WEP keys not set!\n");
return UAP_FAILURE;
}
if (auth_tlv == NULL) {
printf("ERR: No authentication found\n");
return UAP_FAILURE;
}
if ((auth_tlv->auth_mode == 1) && (protocol != PROTOCOL_STATIC_WEP)) {
printf("ERR:Shared key authentication is not allowed for Open/WPA/WPA2/Mixed mode\n");
return UAP_FAILURE;
}
if (passphrase_tlv == NULL) {
printf("ERR: No passphrase found\n");
return UAP_FAILURE;
}
if (((protocol == PROTOCOL_WPA) || (protocol == PROTOCOL_WPA2)
|| (protocol == PROTOCOL_WPA3_SAE)
|| (protocol == PROTOCOL_WPA2_MIXED))
&& !(passphrase_tlv->length)) {
printf("ERR:Passphrase must be set for WPA/WPA2/Mixed/WPA3 SAE mode\n");
return UAP_FAILURE;
}
if ((protocol == PROTOCOL_WPA) || (protocol == PROTOCOL_WPA2_MIXED)) {
if (is_cipher_valid(pairwise_cipher_wpa, group_cipher) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
return UAP_FAILURE;
}
}
if ((protocol == PROTOCOL_WPA2) || (protocol == PROTOCOL_WPA2_MIXED)
|| (protocol == PROTOCOL_WPA3_SAE)
) {
if (is_cipher_valid(pairwise_cipher_wpa2, group_cipher) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
return UAP_FAILURE;
}
}
if (chnlist_tlv == NULL) {
printf("ERR: No channel list found\n");
return UAP_FAILURE;
}
if (acs_mode_enabled) {
pchan_list = (channel_list *) & (chnlist_tlv->chan_list);
for (i = 0; i < chan_list_len; i++) {
if ((!state_80211d) &&
(pchan_list->chan_number == MAX_CHANNELS_BG)
&&
(strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1)
== 0)
) {
printf("ERR: Invalid scan channel 14, 802.11d disabled, country code JP!\n");
return UAP_FAILURE;
}
if (fw.region_code == JP_REGION_0xFE &&
((pchan_list->chan_number == 12) ||
(pchan_list->chan_number == 13))) {
printf("ERR:Scan Channel 12 or 13 is not allowed for region code 0xFE\n");
return UAP_FAILURE;
}
pchan_list++;
}
if (!state_80211d) {
/* Block scan channels 8 and 12 in 5GHz band if 11d is not enabled and country code not set to JP */
pchan_list =
(channel_list *) & (chnlist_tlv->chan_list);
for (i = 0; i < chan_list_len; i++) {
if ((pchan_list->bandcfg.chanBand == BAND_5GHZ)
&& ((pchan_list->chan_number == 8) ||
(pchan_list->chan_number == 12))) {
printf("ERR: Invalid band for scan channel %d\n", pchan_list->chan_number);
return UAP_FAILURE;
}
pchan_list++;
}
}
if (state_80211d) {
/* Set default country code to US */
strncpy(country_80211d, "US ",
sizeof(country_80211d) - 1);
pchan_list =
(channel_list *) & (chnlist_tlv->chan_list);
for (i = 0; i < chan_list_len; i++) {
/* Set country code to JP if channel is 8 or 12 and band is 5GHZ */
if ((pchan_list->chan_number < MAX_CHANNELS_BG)
&& (scan_channels_band == BAND_A)) {
strncpy(country_80211d, "JP ",
sizeof(country_80211d) - 1);
}
if (check_channel_validity_11d
(pchan_list->chan_number,
scan_channels_band, 0) == UAP_FAILURE)
return UAP_FAILURE;
pchan_list++;
}
if (update_domain_info
(country_80211d,
scan_channels_band) == UAP_FAILURE) {
return UAP_FAILURE;
}
}
}
#ifdef WIFI_DIRECT_SUPPORT
if (strncmp(dev_name, "wfd", 3))
#endif
if ((!acs_mode_enabled &&
(channel_tlv_band == (BAND_B | BAND_G)))
|| (acs_mode_enabled &&
(scan_channels_band == (BAND_B | BAND_G)))) {
if (rates_tlv == NULL) {
printf("ERR: No rates found\n");
return UAP_FAILURE;
}
for (i = 0; i < op_rates_len; i++) {
rate = rates_tlv->
operational_rates[i] &
~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
rate_bitmap |= BITMAP_RATE_1M;
break;
case 4:
rate_bitmap |= BITMAP_RATE_2M;
break;
case 11:
rate_bitmap |= BITMAP_RATE_5_5M;
break;
case 22:
rate_bitmap |= BITMAP_RATE_11M;
break;
}
}
if ((rate_bitmap & B_RATE_MANDATORY) !=
B_RATE_MANDATORY) {
if (acs_mode_enabled)
printf("ERR: Rates/Scan channels do not match!\n");
else
printf("ERR: Rates/Channel do not match!\n");
return UAP_FAILURE;
}
}
if ((!acs_mode_enabled && (channel_tlv_band == BAND_A))
|| (acs_mode_enabled && (scan_channels_band == BAND_A))) {
if (rates_tlv == NULL) {
printf("ERR: No rates found\n");
return UAP_FAILURE;
}
for (i = 0; i < op_rates_len; i++) {
rate = rates_tlv->
operational_rates[i] & ~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
case 4:
case 11:
case 22:
if (acs_mode_enabled)
printf("ERR: Rates/Scan channels do not match!\n");
else
printf("ERR: Rates/Channel do not match!\n");
return UAP_FAILURE;
}
}
state_80211h = 1;
if (sg_snmp_mib
(ACTION_SET, OID_80211H_ENABLE, sizeof(state_80211h),
&state_80211h)
== UAP_FAILURE) {
return UAP_FAILURE;
}
if (update_domain_info(country_80211d, BAND_A) == UAP_FAILURE) {
return UAP_FAILURE;
}
}
#define ISSUPP_CHANWIDTH40(Dot11nDevCap) (Dot11nDevCap & MBIT(17))
#define ISSUPP_SHORTGI40(Dot11nDevCap) (Dot11nDevCap & MBIT(24))
if (enable_40Mhz) {
if (!ISSUPP_CHANWIDTH40(fw.hw_dot_11n_dev_cap)) {
printf("ERR: It's not support HT40 from Hardware Cap\n");
return UAP_FAILURE;
}
}
if (enable_11n) {
/*For protocol = Mixed, 11n enabled, only allow TKIP cipher for WPA protocol, not for WPA2 */
if ((protocol == PROTOCOL_WPA2_MIXED) &&
(pairwise_cipher_wpa2 == CIPHER_TKIP)) {
printf("ERR: WPA2 pairwise cipher cannot be TKIP when AP operates in 802.11n Mixed mode.\n");
return UAP_FAILURE;
} else if (protocol == PROTOCOL_STATIC_WEP) {
printf("ERR: WEP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
if ((tx_rate_config.rate == UAP_RATE_INDEX_MCS32) && !enable_40Mhz) {
printf("ERR:uAP must be configured to operate in 40MHz if tx_rate is MCS32\n");
return UAP_FAILURE;
}
if (enable_20Mhz_sgi && enable_gf) {
if ((tx_rate_config.rate >= UAP_RATE_INDEX_MCS0) &&
(tx_rate_config.rate <= UAP_RATE_INDEX_MCS7)) {
printf("ERR: Invalid tx_rate for uAP in (20MHz Short GI + Green Field) mode\n");
return UAP_FAILURE;
}
}
mcs_rate_index =
get_rate_index_from_bitmap(tx_rate_config.bitmap_rates,
sizeof(tx_rate_config.bitmap_rates));
if ((mcs_rate_index >= UAP_RATE_BITMAP_MCS0) &&
(mcs_rate_index <= UAP_RATE_BITMAP_MCS127)) {
mcs_rate_index -= (UAP_RATE_BITMAP_MCS0 - UAP_RATE_INDEX_MCS0);
if ((mcs_rate_index == UAP_RATE_INDEX_MCS32) & !enable_40Mhz) {
printf("ERR:uAP must be configured to operate in 40MHz if rate_bitmap contains MCS32\n");
return UAP_FAILURE;
}
if (enable_20Mhz_sgi && enable_gf) {
if ((mcs_rate_index >= UAP_RATE_INDEX_MCS0) &&
(mcs_rate_index <= UAP_RATE_INDEX_MCS7)) {
printf("ERR: Invalid tx_rate for uAP in (20MHz Short GI + Green Field) mode\n");
return UAP_FAILURE;
}
}
}
/* if 11d enabled, Channel 14, country code "JP", only B rates are allowed */
if ((channel == 14) && state_80211d &&
(strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1) == 0)) {
if (rates_tlv == NULL) {
printf("ERR:No rates found\n");
return UAP_FAILURE;
}
if (enable_11n) {
printf("ERR:11n must be disabled and the only B rates are allowed if 11d enabled and country code is JP with channel 14.\n");
return UAP_FAILURE;
}
for (i = 0; i < op_rates_len; i++) {
rate = rates_tlv->
operational_rates[i] & ~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
case 4:
case 11:
case 22:
break;
default:
printf("ERR:If 11d enabled, channel 14 and country code is JP, the only B rates are allowed.\n");
return UAP_FAILURE;
}
}
}
/* Channels 14, 165 are not allowed to operate in 40MHz mode */
if (!acs_mode_enabled && enable_40Mhz) {
if ((channel == 14)
|| (channel == 165)
) {
printf("ERR:Invalid channel %d for 40MHz operation\n",
channel);
return UAP_FAILURE;
} else if (!secondary_ch_set) {
printf("ERR:Secondary channel should be set when 40Mhz is enabled!\n");
return UAP_FAILURE;
}
}
/* Channels 14, 140, 165 are not allowed to operate in 40MHz mode */
if (acs_mode_enabled && enable_40Mhz) {
if (chnlist_tlv == NULL) {
printf("ERR: No channel list found\n");
return UAP_FAILURE;
}
pchan_list = (channel_list *) & (chnlist_tlv->chan_list);
for (i = 0; i < chan_list_len; i++) {
if ((pchan_list->chan_number != 14)
&& (pchan_list->chan_number != 140) &&
(pchan_list->chan_number != 165)
) {
flag = 1;
break;
}
pchan_list++;
}
if (!flag) {
printf("ERR:Invalid channels in scan channel list for 40MHz operation\n");
return UAP_FAILURE;
}
}
if (0 == get_fw_info(&fw)) {
/*check whether support 802.11AC through BAND_AAC bit */
if (fw.fw_bands & BAND_AAC) {
ret = get_802_11ac_cfg(&vhtcfg);
if (UAP_SUCCESS == ret) {
/* Note: When 11AC is disabled, FW sets vht_rx_mcs to 0xffff */
if ((vhtcfg.vht_rx_mcs != 0xffff) &&
(!enable_11n)) {
printf("ERR: 11ac enable while 11n disable, it is forbidden! \n");
return UAP_FAILURE;
}
} else {
printf("Don't support 802.11AC \n");
return UAP_SUCCESS;
}
} else
printf("No support 802 11AC.\n");
} else {
printf("ERR: get_fw_info fail\n");
return UAP_FAILURE;
}
return ret;
}
/**
* @brief Checks current bss configuration
*
* @param buf pointer to bss_config_t
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
check_bss_config(t_u8 *buf)
{
bss_config_t *bss_config = NULL;;
t_u8 acs_mode_enabled = 0;
t_u8 *cbuf = NULL;
apcmdbuf_cfg_80211d *cmd_buf = NULL;
t_u16 buf_len, cmd_len;
char country_80211d[4] = { 'U', 'S', ' ', 0 };
t_u8 state_80211h = 0;
int channel_tlv_band = BAND_B | BAND_G;
t_u8 secondary_ch_set = 0;
int scan_channels_band = BAND_B | BAND_G;
t_u8 state_80211d = 0;
t_u8 rate = 0;
t_u32 rate_bitmap = 0;
t_u16 enable_40Mhz = 0;
t_u16 enable_20Mhz_sgi = 0;
t_u16 enable_gf = 0;
t_u8 enable_11n = 0;
int flag = 0;
fw_info fw;
int i = 0, ret = UAP_SUCCESS;
tx_rate_cfg_t tx_rate_config;
t_u32 mcs_rate_index = 0;
struct eth_priv_vhtcfg vhtcfg = { 0 };
#define BITMAP_RATE_1M 0x01
#define BITMAP_RATE_2M 0x02
#define BITMAP_RATE_5_5M 0x04
#define BITMAP_RATE_11M 0x8
#define B_RATE_MANDATORY 0x0f
if (NULL == buf) {
printf("ERR: No buffer for bss_configure!\n");
return UAP_FAILURE;
}
bss_config = (bss_config_t *)buf;
ret = sg_snmp_mib(ACTION_GET, OID_80211D_ENABLE, sizeof(state_80211d),
&state_80211d);
buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
cbuf = (t_u8 *)malloc(buf_len);
if (!cbuf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(cbuf, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_cfg_80211d *)cbuf;
cmd_len = (sizeof(apcmdbuf_cfg_80211d) - sizeof(domain_param_t));
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->action = uap_cpu_to_le16(ACTION_GET);
cmd_buf->cmd_code = HostCmd_CMD_802_11D_DOMAIN_INFO;
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
if (ret == UAP_SUCCESS && cmd_buf->result == CMD_SUCCESS) {
if (cmd_buf->domain.country_code[0] ||
cmd_buf->domain.country_code[1] ||
cmd_buf->domain.country_code[2]) {
strncpy(country_80211d,
(char *)cmd_buf->domain.country_code,
COUNTRY_CODE_LEN);
}
}
free(cbuf);
/* get region code to handle special cases */
memset(&fw, 0, sizeof(fw));
if (get_fw_info(&fw)) {
printf("Could not get fw info!\n");
return UAP_FAILURE;
}
if (get_tx_rate_cfg(&tx_rate_config) == UAP_FAILURE) {
printf("Could not get tx_rate_cfg!\n");
return UAP_FAILURE;
}
if ((!state_80211d) && (bss_config->channel == MAX_CHANNELS_BG)
&& (strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1) == 0)
) {
printf("ERR: Invalid channel 14, 802.11d disabled, country code JP!\n");
return UAP_FAILURE;
}
if ((fw.fw_bands & (BAND_B | BAND_G | BAND_GN | BAND_GAC))
&& !(fw.fw_bands & (BAND_A | BAND_AAC))
) {
if (bss_config->channel > MAX_CHANNELS_BG) {
printf("ERR: Invalid channel in 2.4GHz band!\n");
return UAP_FAILURE;
}
}
if (!(fw.fw_bands & (BAND_B | BAND_G | BAND_GN
| BAND_GAC)) && (fw.fw_bands & (BAND_A
| BAND_AAC))) {
if (bss_config->channel < 36 ||
bss_config->channel > MAX_CHANNELS) {
printf("ERR: Invalid channel in 5GHz band!\n");
return UAP_FAILURE;
}
}
if (bss_config->bandcfg.chanBand == BAND_5GHZ)
channel_tlv_band = BAND_A;
secondary_ch_set = bss_config->bandcfg.chan2Offset;
if (channel_tlv_band != BAND_A) {
/* When country code is not Japan, allow channels 5-11 for US and 5-13 for non-US
* only for secondary channel below */
if (secondary_ch_set == SEC_CHAN_BELOW) {
if (!strncmp
(country_80211d, "US", COUNTRY_CODE_LEN - 1)) {
if (bss_config->channel >
DEFAULT_MAX_CHANNEL_BELOW) {
printf("ERR: Only channels 5-11 are allowed with secondary channel below for the US\n");
return UAP_FAILURE;
}
} else if (strncmp
(country_80211d, "JP",
COUNTRY_CODE_LEN - 1)) {
if (bss_config->channel >
DEFAULT_MAX_CHANNEL_BELOW_NON_US) {
printf("ERR: Only channels 5-13 are allowed with secondary channel below for" "non-Japan countries!\n");
return UAP_FAILURE;
}
}
}
/* When country code is not Japan, allow channels 1-7 for US and 1-9 for non-US
* only for secondary channel above */
if (secondary_ch_set == SEC_CHAN_ABOVE) {
if (!strncmp
(country_80211d, "US", COUNTRY_CODE_LEN - 1)) {
if (bss_config->channel >
DEFAULT_MAX_CHANNEL_ABOVE) {
printf("ERR: Only channels 1-7 are allowed with secondary channel above for the US\n");
return UAP_FAILURE;
}
} else if (strncmp
(country_80211d, "JP",
COUNTRY_CODE_LEN - 1)) {
if (bss_config->channel >
DEFAULT_MAX_CHANNEL_ABOVE_NON_US) {
printf("ERR: Only channels 1-9 are allowed with secondary channel above for" "non-Japan countries!\n");
return UAP_FAILURE;
}
}
}
}
if (!(bss_config->bandcfg.scanMode == SCAN_MODE_ACS)) {
if (check_channel_validity_11d
(bss_config->channel, channel_tlv_band, 1) == UAP_FAILURE)
return UAP_FAILURE;
if (state_80211d) {
/* Set country code to JP if channel is 8 or 12 and band is 5GHZ */
if ((bss_config->channel < MAX_CHANNELS_BG) &&
(channel_tlv_band == BAND_A))
strncpy(country_80211d, "JP ",
sizeof(country_80211d) - 1);
} else {
if ((channel_tlv_band == BAND_A) &&
((bss_config->channel == 8) ||
(bss_config->channel == 12))) {
printf("ERR:Invalid band for given channel\n");
return UAP_FAILURE;
}
}
} else {
acs_mode_enabled = 1;
}
#define JP_REGION_0xFE 0xFE
if (fw.region_code == JP_REGION_0xFE &&
((bss_config->channel == 12) || (bss_config->channel == 13))) {
printf("ERR:Channel 12 or 13 is not allowed for region code 0xFE\n");
return UAP_FAILURE;
}
for (i = 0; i < bss_config->num_of_chan; i++) {
scan_channels_band = BAND_B | BAND_G;
if ((scan_channels_band != BAND_A) &&
(bss_config->chan_list[i].bandcfg.chanBand == BAND_5GHZ)) {
scan_channels_band = BAND_A;
}
if (check_channel_validity_11d
(bss_config->chan_list[i].chan_number, scan_channels_band,
0) == UAP_FAILURE)
return UAP_FAILURE;
}
if (state_80211d) {
if (check_tx_pwr_validity_11d(bss_config->tx_power_level) ==
UAP_FAILURE)
return UAP_FAILURE;
}
if (bss_config->supported_mcs_set[0]) {
enable_11n = 1;
enable_40Mhz = IS_11N_40MHZ_ENABLED(bss_config->ht_cap_info);
enable_20Mhz_sgi =
IS_11N_20MHZ_SHORTGI_ENABLED(bss_config->ht_cap_info);
enable_gf = IS_11N_GF_ENABLED(bss_config->ht_cap_info);
}
if (bss_config->mcbc_data_rate &&
(is_mcbc_rate_valid(bss_config->mcbc_data_rate) != UAP_SUCCESS)) {
printf("ERR: Invalid MCBC Data Rate \n");
return UAP_FAILURE;
}
if ((bss_config->protocol == PROTOCOL_STATIC_WEP)
&& (0 == bss_config->wep_cfg.key0.is_default)
&& (0 == bss_config->wep_cfg.key1.is_default)
&& (0 == bss_config->wep_cfg.key2.is_default)
&& (0 == bss_config->wep_cfg.key3.is_default)) {
printf("ERR:WEP keys not set!\n");
return UAP_FAILURE;
}
if ((bss_config->auth_mode == 1) &&
(bss_config->protocol != PROTOCOL_STATIC_WEP)) {
printf("ERR:Shared key authentication is not allowed for Open/WPA/WPA2/Mixed mode\n");
return UAP_FAILURE;
}
if (((bss_config->protocol == PROTOCOL_WPA) ||
(bss_config->protocol == PROTOCOL_WPA2)
|| (bss_config->protocol == PROTOCOL_WPA3_SAE)
|| (bss_config->protocol == PROTOCOL_WPA2_MIXED)) &&
!(bss_config->wpa_cfg.length)) {
printf("ERR:Passphrase must be set for WPA/WPA2/Mixed/WPA3 SAE mode\n");
return UAP_FAILURE;
}
if ((bss_config->protocol == PROTOCOL_WPA) ||
(bss_config->protocol == PROTOCOL_WPA2_MIXED)) {
if (is_cipher_valid
(bss_config->wpa_cfg.pairwise_cipher_wpa,
bss_config->wpa_cfg.group_cipher) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
return UAP_FAILURE;
}
}
if ((bss_config->protocol == PROTOCOL_WPA2) ||
(bss_config->protocol == PROTOCOL_WPA2_MIXED)
|| (bss_config->protocol == PROTOCOL_WPA3_SAE)
) {
if (is_cipher_valid
(bss_config->wpa_cfg.pairwise_cipher_wpa2,
bss_config->wpa_cfg.group_cipher) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
return UAP_FAILURE;
}
}
if (0 == bss_config->num_of_chan) {
printf("ERR: No channel list found\n");
return UAP_FAILURE;
}
if (acs_mode_enabled) {
for (i = 0; i < bss_config->num_of_chan; i++) {
if ((!state_80211d) &&
(bss_config->chan_list[i].chan_number ==
MAX_CHANNELS_BG)
&&
(strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1)
== 0)
) {
printf("ERR: Invalid scan channel 14, 802.11d disabled, country code JP!\n");
return UAP_FAILURE;
}
if (fw.region_code == JP_REGION_0xFE &&
((bss_config->chan_list[i].chan_number == 12) ||
(bss_config->chan_list[i].chan_number == 13))) {
printf("ERR:Scan Channel 12 or 13 is not allowed for region code 0xFE\n");
return UAP_FAILURE;
}
}
if (!state_80211d) {
/* Block scan channels 8 and 12 in 5GHz band if 11d is not enabled and country code not set to JP */
for (i = 0; i < bss_config->num_of_chan; i++) {
if ((bss_config->chan_list[i].bandcfg.
chanBand == BAND_5GHZ)
&&
((bss_config->chan_list[i].chan_number == 8)
|| (bss_config->chan_list[i].chan_number ==
12))) {
printf("ERR: Invalid band for scan channel %d\n", bss_config->chan_list[i].chan_number);
return UAP_FAILURE;
}
}
}
if (state_80211d) {
/* Set default country code to US */
strncpy(country_80211d, "US ",
sizeof(country_80211d) - 1);
for (i = 0; i < bss_config->num_of_chan; i++) {
/* Set country code to JP if channel is 8 or 12 and band is 5GHZ */
if ((bss_config->chan_list[i].chan_number <
MAX_CHANNELS_BG) &&
(scan_channels_band == BAND_A)) {
strncpy(country_80211d, "JP ",
sizeof(country_80211d) - 1);
}
if (check_channel_validity_11d
(bss_config->chan_list[i].chan_number,
scan_channels_band, 0) == UAP_FAILURE)
return UAP_FAILURE;
}
if (update_domain_info
(country_80211d,
scan_channels_band) == UAP_FAILURE) {
return UAP_FAILURE;
}
}
}
#ifdef WIFI_DIRECT_SUPPORT
if (strncmp(dev_name, "wfd", 3))
#endif
if ((!acs_mode_enabled &&
(channel_tlv_band == (BAND_B | BAND_G)))
|| (acs_mode_enabled &&
(scan_channels_band == (BAND_B | BAND_G)))) {
if (0 == bss_config->rates[0]) {
printf("ERR: No rates found\n");
return UAP_FAILURE;
}
for (i = 0; i < MAX_DATA_RATES && bss_config->rates[i];
i++) {
rate = bss_config->
rates[i] & ~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
rate_bitmap |= BITMAP_RATE_1M;
break;
case 4:
rate_bitmap |= BITMAP_RATE_2M;
break;
case 11:
rate_bitmap |= BITMAP_RATE_5_5M;
break;
case 22:
rate_bitmap |= BITMAP_RATE_11M;
break;
}
}
if ((rate_bitmap & B_RATE_MANDATORY) !=
B_RATE_MANDATORY) {
if (acs_mode_enabled)
printf("ERR: Rates/Scan channels do not match!\n");
else
printf("ERR: Rates/Channel do not match!\n");
return UAP_FAILURE;
}
}
if ((!acs_mode_enabled && (channel_tlv_band == BAND_A))
|| (acs_mode_enabled && (scan_channels_band == BAND_A))) {
if (0 == bss_config->rates[0]) {
printf("ERR: No rates found\n");
return UAP_FAILURE;
}
for (i = 0; i < MAX_DATA_RATES && bss_config->rates[i]; i++) {
rate = bss_config->rates[i] & ~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
case 4:
case 11:
case 22:
if (acs_mode_enabled)
printf("ERR: Rates/Scan channels do not match!\n");
else
printf("ERR: Rates/Channel do not match!\n");
return UAP_FAILURE;
}
}
state_80211h = 1;
if (sg_snmp_mib
(ACTION_SET, OID_80211H_ENABLE, sizeof(state_80211h),
&state_80211h)
== UAP_FAILURE) {
return UAP_FAILURE;
}
if (update_domain_info(country_80211d, BAND_A) == UAP_FAILURE) {
return UAP_FAILURE;
}
}
#define ISSUPP_CHANWIDTH40(Dot11nDevCap) (Dot11nDevCap & MBIT(17))
#define ISSUPP_SHORTGI40(Dot11nDevCap) (Dot11nDevCap & MBIT(24))
if (enable_40Mhz) {
if (!ISSUPP_CHANWIDTH40(fw.hw_dot_11n_dev_cap)) {
printf("ERR: It's not support HT40 from Hardware Cap\n");
return UAP_FAILURE;
}
}
if (enable_11n) {
/*For protocol = Mixed, 11n enabled, only allow TKIP cipher for WPA protocol, not for WPA2 */
if ((bss_config->protocol == PROTOCOL_WPA2_MIXED) &&
(bss_config->wpa_cfg.pairwise_cipher_wpa2 == CIPHER_TKIP)) {
printf("ERR: WPA2 pairwise cipher cannot be TKIP when AP operates in 802.11n Mixed mode.\n");
return UAP_FAILURE;
} else if (bss_config->protocol == PROTOCOL_STATIC_WEP) {
printf("ERR: WEP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
if ((tx_rate_config.rate == UAP_RATE_INDEX_MCS32) && !enable_40Mhz) {
printf("ERR:uAP must be configured to operate in 40MHz if tx_rate is MCS32\n");
return UAP_FAILURE;
}
if (enable_20Mhz_sgi && enable_gf) {
if ((tx_rate_config.rate >= UAP_RATE_INDEX_MCS0) &&
(tx_rate_config.rate <= UAP_RATE_INDEX_MCS7)) {
printf("ERR: Invalid tx_rate for uAP in (20MHz Short GI + Green Field) mode\n");
return UAP_FAILURE;
}
}
mcs_rate_index =
get_rate_index_from_bitmap(tx_rate_config.bitmap_rates,
sizeof(tx_rate_config.bitmap_rates));
if ((mcs_rate_index >= UAP_RATE_BITMAP_MCS0) &&
(mcs_rate_index <= UAP_RATE_BITMAP_MCS127)) {
mcs_rate_index -= (UAP_RATE_BITMAP_MCS0 - UAP_RATE_INDEX_MCS0);
if ((mcs_rate_index == UAP_RATE_INDEX_MCS32) & !enable_40Mhz) {
printf("ERR:uAP must be configured to operate in 40MHz if rate_bitmap contains MCS32\n");
return UAP_FAILURE;
}
if (enable_20Mhz_sgi && enable_gf) {
if ((mcs_rate_index >= UAP_RATE_INDEX_MCS0) &&
(mcs_rate_index <= UAP_RATE_INDEX_MCS7)) {
printf("ERR: Invalid tx_rate for uAP in (20MHz Short GI + Green Field) mode\n");
return UAP_FAILURE;
}
}
}
/* if 11d enabled, Channel 14, country code "JP", only B rates are allowed*/
if ((bss_config->channel == 14) && state_80211d &&
(strncmp(country_80211d, "JP", COUNTRY_CODE_LEN - 1) == 0)) {
if (0 == bss_config->rates[0]) {
printf("ERR:No rates found\n");
return UAP_FAILURE;
}
if (enable_11n) {
printf("ERR:11n must be disabled and the only B rates are allowed if 11d enabled and country code is JP with channel 14.\n");
return UAP_FAILURE;
}
for (i = 0; i < MAX_DATA_RATES && bss_config->rates[i]; i++) {
rate = bss_config->rates[i] & ~BASIC_RATE_SET_BIT;
switch (rate) {
case 2:
case 4:
case 11:
case 22:
break;
default:
printf("ERR:If 11d enabled, channel 14 and country code is JP, the only B rates are allowed.\n");
return UAP_FAILURE;
}
}
}
/* Channels 14, 165 are not allowed to operate in 40MHz mode */
if (!acs_mode_enabled && enable_40Mhz) {
if ((bss_config->channel == 14)
|| (bss_config->channel == 165)
) {
printf("ERR:Invalid channel %d for 40MHz operation\n",
bss_config->channel);
return UAP_FAILURE;
} else if (!secondary_ch_set) {
printf("ERR:Secondary channel should be set when 40Mhz is enabled!\n");
return UAP_FAILURE;
}
}
/* Channels 14, 140, 165 are not allowed to operate in 40MHz mode */
if (acs_mode_enabled && enable_40Mhz) {
if (bss_config->num_of_chan == 0) {
printf("ERR: No channel list found\n");
return UAP_FAILURE;
}
for (i = 0; i < bss_config->num_of_chan; i++) {
if ((bss_config->chan_list[i].chan_number != 14)
&& (bss_config->chan_list[i].chan_number != 140) &&
(bss_config->chan_list[i].chan_number != 165)
) {
flag = 1;
break;
}
}
if (!flag) {
printf("ERR:Invalid channels in scan channel list for 40MHz operation\n");
return UAP_FAILURE;
}
}
if (0 == get_fw_info(&fw)) {
/*check whether support 802.11AC through BAND_AAC bit */
if (fw.fw_bands & BAND_AAC) {
ret = get_802_11ac_cfg(&vhtcfg);
if (UAP_SUCCESS == ret) {
/* Note: When 11AC is disabled, FW sets vht_rx_mcs to 0xffff */
if ((vhtcfg.vht_rx_mcs != 0xffff) &&
(!enable_11n)) {
printf("ERR: 11ac enable while 11n disable, it is forbidden! \n");
return UAP_FAILURE;
}
} else {
printf("Don't support 802.11AC \n");
return UAP_SUCCESS;
}
} else
printf("No support 802 11AC.\n");
} else {
printf("ERR: get_fw_info fail\n");
return UAP_FAILURE;
}
return ret;
}
/**
* @brief Send read/write command along with register details to the driver
* @param reg Reg type
* @param offset Pointer to register offset string
* @param strvalue Pointer to value string
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
apcmd_regrdwr_process(int reg, char *offset, char *strvalue)
{
apcmdbuf_reg_rdwr *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
char *whichreg;
/* Alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_len = sizeof(apcmdbuf_reg_rdwr);
cmd_buf = (apcmdbuf_reg_rdwr *)buf;
/* Fill the command buffer */
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
switch (reg) {
case CMD_MAC:
whichreg = "MAC";
cmd_buf->cmd_code = HostCmd_CMD_MAC_REG_ACCESS;
break;
case CMD_BBP:
whichreg = "BBP";
cmd_buf->cmd_code = HostCmd_CMD_BBP_REG_ACCESS;
break;
case CMD_RF:
cmd_buf->cmd_code = HostCmd_CMD_RF_REG_ACCESS;
whichreg = "RF";
break;
default:
printf("Invalid register set specified.\n");
free(buf);
return UAP_FAILURE;
}
if (strvalue) {
cmd_buf->action = 1; // WRITE
} else {
cmd_buf->action = 0; // READ
}
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->offset = A2HEXDECIMAL(offset);
cmd_buf->offset = uap_cpu_to_le16(cmd_buf->offset);
if (strvalue) {
cmd_buf->value = A2HEXDECIMAL(strvalue);
cmd_buf->value = uap_cpu_to_le32(cmd_buf->value);
}
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
printf("Successfully executed the command\n");
printf("%s[0x%04hx] = 0x%08x\n",
whichreg, uap_le16_to_cpu(cmd_buf->offset),
uap_le32_to_cpu(cmd_buf->value));
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Send read command for EEPROM
*
* Usage: "Usage : rdeeprom <offset> <byteCount>"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_read_eeprom(int argc, char *argv[])
{
apcmdbuf_eeprom_access *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
t_u16 byte_count, offset;
int ret = UAP_SUCCESS;
int opt;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_apcmd_read_eeprom_usage();
return UAP_FAILURE;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (!argc ||
(argc && is_input_valid(RDEEPROM, argc, argv) != UAP_SUCCESS)) {
print_apcmd_read_eeprom_usage();
return UAP_FAILURE;
}
offset = A2HEXDECIMAL(argv[0]);
byte_count = A2HEXDECIMAL(argv[1]);
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_eeprom_access *)buf;
cmd_len = sizeof(apcmdbuf_eeprom_access);
cmd_buf->size = sizeof(apcmdbuf_eeprom_access) - BUF_HEADER_SIZE;
cmd_buf->result = 0;
cmd_buf->seq_num = 0;
cmd_buf->action = 0;
cmd_buf->cmd_code = HostCmd_EEPROM_ACCESS;
cmd_buf->offset = uap_cpu_to_le16(offset);
cmd_buf->byte_count = uap_cpu_to_le16(byte_count);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
printf("Successfully executed the command\n");
byte_count = uap_le16_to_cpu(cmd_buf->byte_count);
offset = uap_le16_to_cpu(cmd_buf->offset);
hexdump_data("EEPROM", (void *)cmd_buf->value,
byte_count, ' ');
} else {
printf("ERR:Command Response incorrect!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief Show usage information for the regrdwr command
* command
*
* $return N/A
*/
void
print_regrdwr_usage(void)
{
printf("\nUsage : uaputl.exe regrdwr <TYPE> <OFFSET> [value]\n");
printf("\nTYPE Options: 1 - read/write MAC register");
printf("\n 2 - read/write BBP register");
printf("\n 3 - read/write RF register");
printf("\n");
return;
}
/**
* @brief Provides interface to perform read/write operations on regsiters
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_regrdwr(int argc, char *argv[])
{
int opt;
t_s32 reg;
int ret = UAP_SUCCESS;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_regrdwr_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if ((argc < 2) || (argc > 3)) {
printf("ERR:wrong arguments.\n");
print_regrdwr_usage();
return UAP_FAILURE;
}
if ((atoi(argv[0]) != 1) && (atoi(argv[0]) != 2) &&
(atoi(argv[0]) != 3)) {
printf("ERR:Illegal register type %s. Must be either '1','2' or '3'.\n", argv[0]);
print_regrdwr_usage();
return UAP_FAILURE;
}
reg = atoi(argv[0]);
ret = apcmd_regrdwr_process(reg, argv[1], argc > 2 ? argv[2] : NULL);
return ret;
}
/**
* @brief Show usage information for the memaccess command
* command
*
* $return N/A
*/
void
print_memaccess_usage(void)
{
printf("\nUsage : uaputl.exe memaccess <ADDRESS> [value]\n");
printf("\nRead/Write memory location");
printf("\nADDRESS: Address of the memory location to be read/written");
printf("\nValue : Value to be written at that address\n");
return;
}
/**
* @brief Provides interface to perform read/write memory location
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_memaccess(int argc, char *argv[])
{
int opt;
apcmdbuf_mem_access *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
char *address = NULL;
char *value = NULL;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_memaccess_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if ((argc < 1) || (argc > 2)) {
printf("ERR:wrong arguments.\n");
print_memaccess_usage();
return UAP_FAILURE;
}
address = argv[0];
if (argc == 2)
value = argv[1];
/* Alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_len = sizeof(apcmdbuf_mem_access);
cmd_buf = (apcmdbuf_mem_access *)buf;
/* Fill the command buffer */
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->cmd_code = HostCmd_CMD_MEM_ACCESS;
if (value)
cmd_buf->action = 1; // WRITE
else
cmd_buf->action = 0; // READ
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->address = A2HEXDECIMAL(address);
cmd_buf->address = uap_cpu_to_le32(cmd_buf->address);
if (value) {
cmd_buf->value = A2HEXDECIMAL(value);
cmd_buf->value = uap_cpu_to_le32(cmd_buf->value);
}
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
printf("Successfully executed the command\n");
printf("[0x%04x] = 0x%08x\n",
uap_le32_to_cpu(cmd_buf->address),
uap_le32_to_cpu(cmd_buf->value));
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Creates a sys_debug request to send data packet directly to driver
* @param pkt_type packet type 0 or 5.
* @param control management packet tx control field.
* @param file packet data file.
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_debug_data_packet_inject(int pkt_type, int control, char *file)
{
struct ifreq ifr;
t_s32 sockfd;
t_u8 *buf = NULL;
t_u32 data_len;
FILE *fp = NULL;
pkt_header *header = NULL;
/* Check if file exists */
fp = fopen(file, "r");
if (fp == NULL) {
printf("\nERR:Data file can not be opened %s.\n", file);
return UAP_FAILURE;
}
buf = (t_u8 *)malloc(MRVDRV_SIZE_OF_PKT_BUFFER);
if (buf == NULL) {
printf("Error: allocate memory for packet buffer failed\n");
fclose(fp);
return UAP_FAILURE;
}
memset(buf, 0, MRVDRV_SIZE_OF_PKT_BUFFER);
header = (pkt_header *)buf;
data_len = fparse_for_hex(fp, buf + sizeof(pkt_header));
fclose(fp);
if (data_len > (MRVDRV_SIZE_OF_PKT_BUFFER - sizeof(pkt_header))) {
printf("ERR: Config file is too big %d\n", data_len);
free(buf);
return UAP_FAILURE;
}
header->tx_pkt_type = pkt_type;
header->tx_control = control;
header->pkt_len = data_len;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
free(buf);
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)buf;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAPHOSTPKTINJECT, &ifr)) {
perror("");
printf("ERR:ioctl is not supported by %s\n", dev_name);
close(sockfd);
free(buf);
return UAP_FAILURE;
}
/* Close socket */
close(sockfd);
if (buf)
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the bss_config command
*
* $return N/A
*/
void
print_bss_config_usage(void)
{
printf("\nUsage : bss_config [CONFIG_FILE]\n");
printf("\nIf CONFIG_FILE is provided, a 'set' is performed, else a 'get' is performed.\n");
printf("CONFIG_FILE is file containing all the BSS settings.\n");
return;
}
/**
* @brief Read the BSS profile and populate structure
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @param bss Pointer to BSS configuration buffer
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
parse_bss_config(int argc, char *argv[], bss_config_t *bss)
{
FILE *config_file = NULL;
char *line = NULL;
int li = 0;
char *pos = NULL;
int arg_num = 0;
char *args[30];
int i;
int is_ap_config = 0;
int is_ap_mac_filter = 0;
int keyindex = -1;
int pwkcipher_wpa = -1;
int pwkcipher_wpa2 = -1;
int gwkcipher = -1;
int protocol = -1;
int tx_beacon_rate = -1;
int tx_data_rate = -1;
int mcbc_data_rate = -1;
int num_rates = 0;
int found = 0;
int filter_mac_count = -1;
int retval = UAP_SUCCESS;
int chan_mode = 0;
int band_flag = 0;
int chan_number = 0;
t_u16 max_sta_num_supported = 0;
fw_info fw;
HTCap_t htcap;
int enable_11n = -1;
t_u32 supported_mcs_set = 0;
int ac = 0;
int is_wmm_parameters = 0;
char oui_type[4] = { 0x00, 0x50, 0xf2, 0x02 };
struct eth_priv_vhtcfg vhtcfg = { 0 };
/* Check if file exists */
config_file = fopen(argv[0], "r");
if (config_file == NULL) {
printf("\nERR:Config file can not open.\n");
return UAP_FAILURE;
}
line = (char *)malloc(MAX_CONFIG_LINE);
if (!line) {
printf("ERR:Cannot allocate memory for line\n");
retval = UAP_FAILURE;
goto done;
}
memset(line, 0, MAX_CONFIG_LINE);
/* Parse file and process */
while (config_get_line(line, MAX_CONFIG_LINE, config_file, &li, &pos)) {
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Received config line (%d) = %s\n",
li, line);
#endif
arg_num = parse_line(line, args);
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Number of arguments = %d\n",
arg_num);
for (i = 0; i < arg_num; i++) {
uap_printf(MSG_DEBUG, "\tDBG:Argument %d. %s\n", i + 1,
args[i]);
}
#endif
/* Check for end of AP configurations */
if (is_ap_config == 1) {
if (strcmp(args[0], "}") == 0) {
is_ap_config = 0;
if (tx_data_rate != -1) {
if ((!bss->rates[0]) && (tx_data_rate)
&&
(is_tx_rate_valid
((t_u8)tx_data_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Data Rate \n");
retval = UAP_FAILURE;
goto done;
}
if (bss->rates[0] && tx_data_rate) {
for (i = 0; bss->rates[i] != 0;
i++) {
if ((bss->
rates[i] &
~BASIC_RATE_SET_BIT)
== tx_data_rate) {
found = 1;
break;
}
}
if (!found) {
printf("ERR: Invalid Tx Data Rate \n");
retval = UAP_FAILURE;
goto done;
}
}
/* Set Tx data rate field */
bss->tx_data_rate = tx_data_rate;
}
if (tx_beacon_rate != -1) {
if ((!bss->rates[0]) && (tx_beacon_rate)
&&
(is_tx_rate_valid
((t_u8)tx_beacon_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Beacon Rate \n");
retval = UAP_FAILURE;
goto done;
}
if (bss->rates[0] && tx_beacon_rate) {
for (i = 0; bss->rates[i] != 0;
i++) {
if ((bss->
rates[i] &
~BASIC_RATE_SET_BIT)
== tx_beacon_rate) {
found = 1;
break;
}
}
if (!found) {
printf("ERR: Invalid Tx Beacon Rate \n");
retval = UAP_FAILURE;
goto done;
}
}
/* Set Tx beacon rate field */
bss->tx_beacon_rate = tx_beacon_rate;
}
if (mcbc_data_rate != -1) {
if ((!bss->rates[0]) && (mcbc_data_rate)
&&
(is_mcbc_rate_valid
((t_u8)mcbc_data_rate) !=
UAP_SUCCESS)) {
printf("ERR: Invalid Tx Data Rate \n");
retval = UAP_FAILURE;
goto done;
}
if (bss->rates[0] && mcbc_data_rate) {
for (i = 0; bss->rates[i] != 0;
i++) {
if (bss->
rates[i] &
BASIC_RATE_SET_BIT)
{
if ((bss->
rates[i] &
~BASIC_RATE_SET_BIT)
==
mcbc_data_rate)
{
found = 1;
break;
}
}
}
if (!found) {
printf("ERR: Invalid MCBC Data Rate \n");
retval = UAP_FAILURE;
goto done;
}
}
/* Set MCBC data rate field */
bss->mcbc_data_rate = mcbc_data_rate;
}
if ((protocol == PROTOCOL_STATIC_WEP) &&
(enable_11n == 1)) {
printf("ERR:WEP cannot be used when AP operates in 802.11n mode.\n");
goto done;
}
if (0 == get_fw_info(&fw)) {
/*check whether support 802.11AC through BAND_AAC bit */
if (fw.fw_bands & BAND_AAC) {
retval = get_802_11ac_cfg
(&vhtcfg);
if (retval != UAP_SUCCESS)
goto done;
if ((enable_11n == 1) &&
(vhtcfg.vht_rx_mcs !=
0xffff)) {
printf("ERR: 11n must be enabled when AP operates in 11ac mode.\n");
retval = UAP_FAILURE;
goto done;
}
} else
printf("No support 802 11AC.\n");
} else {
printf("ERR: get_fw_info fail\n");
retval = UAP_FAILURE;
goto done;
}
if ((protocol == PROTOCOL_WPA2_MIXED) &&
((pwkcipher_wpa < 0) ||
(pwkcipher_wpa2 < 0))) {
printf("ERR:Both PwkCipherWPA and PwkCipherWPA2 should be defined for Mixed mode.\n");
retval = UAP_FAILURE;
goto done;
}
if (protocol != -1) {
bss->protocol = protocol;
if (protocol &
(PROTOCOL_WPA | PROTOCOL_WPA2)) {
/* Set key management field */
bss->key_mgmt = KEY_MGMT_PSK;
bss->key_mgmt_operation = 0;
}
}
if (((pwkcipher_wpa >= 0) ||
(pwkcipher_wpa2 >= 0)) &&
(gwkcipher >= 0)) {
if ((protocol == PROTOCOL_WPA) ||
(protocol == PROTOCOL_WPA2_MIXED)) {
if (enable_11n != -1) {
if (is_cipher_valid_with_11n(pwkcipher_wpa, gwkcipher, protocol, enable_11n) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
retval = UAP_FAILURE;
goto done;
}
} else if
(is_cipher_valid_with_proto
(pwkcipher_wpa,
gwkcipher,
protocol) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA pairwise cipher combination!\n");
retval = UAP_FAILURE;
goto done;
}
}
if ((protocol == PROTOCOL_WPA2) ||
(protocol == PROTOCOL_WPA2_MIXED)
|| (protocol == PROTOCOL_WPA3_SAE)
) {
if (enable_11n != -1) {
if (is_cipher_valid_with_11n(pwkcipher_wpa2, gwkcipher, protocol, enable_11n) != UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
retval = UAP_FAILURE;
goto done;
}
} else if
(is_cipher_valid_with_proto
(pwkcipher_wpa2,
gwkcipher,
protocol) !=
UAP_SUCCESS) {
printf("ERR:Wrong group cipher and WPA2 pairwise cipher combination!\n");
retval = UAP_FAILURE;
goto done;
}
}
/* Set pairwise and group cipher fields */
bss->wpa_cfg.pairwise_cipher_wpa =
pwkcipher_wpa;
bss->wpa_cfg.pairwise_cipher_wpa2 =
pwkcipher_wpa2;
bss->wpa_cfg.group_cipher = gwkcipher;
}
continue;
}
}
/* Check for beginning of AP configurations */
if (strcmp(args[0], "ap_config") == 0) {
is_ap_config = 1;
continue;
}
/* Check for end of AP MAC address filter configurations */
if (is_ap_mac_filter == 1) {
if (strcmp(args[0], "}") == 0) {
is_ap_mac_filter = 0;
if (bss->filter.mac_count != filter_mac_count) {
printf("ERR:Number of MAC address provided does not match 'Count'\n");
retval = UAP_FAILURE;
goto done;
}
if (bss->filter.filter_mode &&
(bss->filter.mac_count == 0)) {
printf("ERR:Filter list can not be empty for %s Filter mode\n", (bss->filter.filter_mode == 1) ? "'Allow'" : "'Block'");
retval = UAP_FAILURE;
goto done;
}
continue;
}
}
/* Check for beginning of AP MAC address filter configurations */
if (strcmp(args[0], "ap_mac_filter") == 0) {
is_ap_mac_filter = 1;
bss->filter.mac_count = 0;
filter_mac_count = 0;
continue;
}
if ((strcmp(args[0], "FilterMode") == 0) && is_ap_mac_filter) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0) ||
(atoi(args[1]) > 2)) {
printf("ERR:Illegal FilterMode paramter %d. Must be either '0', '1', or '2'.\n", atoi(args[1]));
retval = UAP_FAILURE;
goto done;
}
bss->filter.filter_mode = atoi(args[1]);
continue;
}
if ((strcmp(args[0], "Count") == 0) && is_ap_mac_filter) {
bss->filter.mac_count = atoi(args[1]);
if ((ISDIGIT(args[1]) == 0) ||
(bss->filter.mac_count > MAX_MAC_ONESHOT_FILTER)) {
printf("ERR: Illegal Count parameter.\n");
retval = UAP_FAILURE;
goto done;
}
}
if ((strncmp(args[0], "mac_", 4) == 0) && is_ap_mac_filter) {
if (filter_mac_count < MAX_MAC_ONESHOT_FILTER) {
if (mac2raw
(args[1],
bss->filter.mac_list[filter_mac_count]) !=
UAP_SUCCESS) {
printf("ERR: Invalid MAC address %s \n",
args[1]);
retval = UAP_FAILURE;
goto done;
}
filter_mac_count++;
} else {
printf("ERR: Filter table can not have more than %d MAC addresses\n", MAX_MAC_ONESHOT_FILTER);
retval = UAP_FAILURE;
goto done;
}
}
/* Check for end of Wmm Parameters configurations */
if (is_wmm_parameters == 1) {
if (strcmp(args[0], "}") == 0) {
is_wmm_parameters = 0;
continue;
}
}
/* Check for beginning of Sticky Tim Sta MAC address Configurations */
if (strcmp(args[0], "Wmm_parameters") == 0) {
is_wmm_parameters = 1;
memset(&(bss->wmm_para), 0, sizeof(bss->wmm_para));
memcpy(bss->wmm_para.ouitype, oui_type,
sizeof(oui_type));
bss->wmm_para.ouisubtype = 1;
bss->wmm_para.version = 1;
continue;
}
if ((strcmp(args[0], "Qos_info") == 0) && is_wmm_parameters) {
bss->wmm_para.qos_info = A2HEXDECIMAL(args[1]);
printf("wmm_para.qos_info = %2x\n",
bss->wmm_para.qos_info);
if ((bss->wmm_para.qos_info != ENABLE_WMM_PS) &&
(bss->wmm_para.qos_info != DISABLE_WMM_PS)) {
printf("ERR:qos_info must be either 0x80 or 0x00.\n");
retval = UAP_FAILURE;
goto done;
}
}
if ((strcmp(args[0], "AC_BE") == 0) && is_wmm_parameters) {
ac = 0;
}
if ((strcmp(args[0], "AC_BK") == 0) && is_wmm_parameters) {
ac = 1;
}
if ((strcmp(args[0], "AC_VI") == 0) && is_wmm_parameters) {
ac = 2;
}
if ((strcmp(args[0], "AC_VO") == 0) && is_wmm_parameters) {
ac = 3;
}
if ((strcmp(args[0], "Aifsn") == 0) && is_wmm_parameters) {
bss->wmm_para.ac_params[ac].aci_aifsn.aifsn =
(t_u8)A2HEXDECIMAL(args[1]);
printf("wmm_para.ac_params[%d].aci_aifsn.aifsn = %x\n",
ac, bss->wmm_para.ac_params[ac].aci_aifsn.aifsn);
bss->wmm_para.ac_params[ac].aci_aifsn.aci = (t_u8)ac;
printf("wmm_para.ac_params[%d].aci_aifsn.aci = %x\n",
ac, bss->wmm_para.ac_params[ac].aci_aifsn.aci);
}
if ((strcmp(args[0], "Ecw_max") == 0) && is_wmm_parameters) {
bss->wmm_para.ac_params[ac].ecw.ecw_max =
(t_u8)A2HEXDECIMAL(args[1]);
printf("wmm_para.ac_params[%d].ecw.ecw_max = %x\n", ac,
bss->wmm_para.ac_params[ac].ecw.ecw_max);
}
if ((strcmp(args[0], "Ecw_min") == 0) && is_wmm_parameters) {
bss->wmm_para.ac_params[ac].ecw.ecw_min =
(t_u8)A2HEXDECIMAL(args[1]);
printf("wmm_para.ac_params[%d].ecw.ecw_min = %x\n", ac,
bss->wmm_para.ac_params[ac].ecw.ecw_min);
}
if ((strcmp(args[0], "Tx_op") == 0) && is_wmm_parameters) {
bss->wmm_para.ac_params[ac].tx_op_limit =
(t_u8)A2HEXDECIMAL(args[1]);
printf("wmm_para.ac_params[%d].tx_op_limit = %x\n", ac,
bss->wmm_para.ac_params[ac].tx_op_limit);
}
if (strcmp(args[0], "SSID") == 0) {
if (arg_num == 1) {
printf("ERR:SSID field is blank!\n");
retval = UAP_FAILURE;
goto done;
} else {
if (args[1][0] == '"') {
args[1]++;
}
if (args[1][strlen(args[1]) - 1] == '"') {
args[1][strlen(args[1]) - 1] = '\0';
}
if ((strlen(args[1]) > MAX_SSID_LENGTH) ||
(strlen(args[1]) == 0)) {
printf("ERR:SSID length out of range (%d to %d).\n", MIN_SSID_LENGTH, MAX_SSID_LENGTH);
retval = UAP_FAILURE;
goto done;
}
/* Set SSID field */
bss->ssid.ssid_len = strlen(args[1]);
memcpy(bss->ssid.ssid, args[1],
bss->ssid.ssid_len);
}
}
if (strcmp(args[0], "BeaconPeriod") == 0) {
if (is_input_valid(BEACONPERIOD, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set beacon period field */
bss->beacon_period = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "ChanList") == 0) {
if (is_input_valid(SCANCHANNELS, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set channel list field */
if ((arg_num - 1) < MAX_CHANNELS) {
bss->num_of_chan = arg_num - 1;
} else {
bss->num_of_chan = MAX_CHANNELS;
}
for (i = 0; (unsigned int)i < bss->num_of_chan; i++) {
sscanf(args[i + 1], "%d.%d", &chan_number,
&band_flag);
bss->chan_list[i].chan_number = chan_number;
bss->chan_list[i].bandcfg.chanBand = BAND_2GHZ;
if (((band_flag != -1) && (band_flag)) ||
(chan_number > MAX_CHANNELS_BG)) {
bss->chan_list[i].bandcfg.chanBand =
BAND_5GHZ;
}
}
}
if (strcmp(args[0], "Channel") == 0) {
if (is_input_valid(CHANNEL, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set channel field */
bss->channel = (t_u8)atoi(args[1]);
if ((arg_num - 1) == 2) {
chan_mode = atoi(args[2]);
memset(&(bss->bandcfg), 0,
sizeof(bss->bandcfg));
if (chan_mode & BITMAP_ACS_MODE) {
int mode;
if (uap_ioctl_dfs_repeater_mode(&mode)
== UAP_SUCCESS) {
if (mode) {
printf("ERR: ACS in DFS Repeater mode" " is not allowed\n");
retval = UAP_FAILURE;
goto done;
}
}
bss->bandcfg.scanMode = SCAN_MODE_ACS;
}
if (chan_mode & BITMAP_CHANNEL_ABOVE)
bss->bandcfg.chan2Offset =
SEC_CHAN_ABOVE;
if (chan_mode & BITMAP_CHANNEL_BELOW)
bss->bandcfg.chan2Offset =
SEC_CHAN_BELOW;
} else
memset(&(bss->bandcfg), 0,
sizeof(bss->bandcfg));
if (bss->channel > MAX_CHANNELS_BG)
bss->bandcfg.chanBand = BAND_5GHZ;
}
if (strcmp(args[0], "Band") == 0) {
if (is_input_valid(BAND, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Clear previously set band */
bss->bandcfg.chanBand = BAND_2GHZ;
if (atoi(args[1]) == 1)
bss->bandcfg.chanBand = BAND_5GHZ;
}
if (strcmp(args[0], "AP_MAC") == 0) {
int ret;
if ((ret =
mac2raw(args[1], bss->mac_addr)) != UAP_SUCCESS) {
printf("ERR: %s Address \n",
ret ==
UAP_FAILURE ? "Invalid MAC" : ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" :
"Multicast");
retval = UAP_FAILURE;
goto done;
}
}
if (strcmp(args[0], "Rate") == 0) {
if (is_input_valid(RATE, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
printf("ERR: Invalid Rate input\n");
retval = UAP_FAILURE;
goto done;
}
/* Set rates field */
if ((arg_num - 1) < MAX_DATA_RATES) {
num_rates = arg_num - 1;
} else {
num_rates = MAX_DATA_RATES;
}
for (i = 0; i < num_rates; i++) {
bss->rates[i] = (t_u8)A2HEXDECIMAL(args[i + 1]);
}
}
if (strcmp(args[0], "TxPowerLevel") == 0) {
if (is_input_valid(TXPOWER, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
printf("ERR:Invalid TxPowerLevel \n");
retval = UAP_FAILURE;
goto done;
}
/* Set Tx power level field */
bss->tx_power_level = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "BroadcastSSID") == 0) {
if (is_input_valid(BROADCASTSSID, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set broadcast SSID control field */
bss->bcast_ssid_ctl = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "RTSThreshold") == 0) {
if (is_input_valid(RTSTHRESH, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set RTS threshold field */
bss->rts_threshold = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "FragThreshold") == 0) {
if (is_input_valid(FRAGTHRESH, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set Frag threshold field */
bss->frag_threshold = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "DTIMPeriod") == 0) {
if (is_input_valid(DTIMPERIOD, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set DTIM period field */
bss->dtim_period = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "RSNReplayProtection") == 0) {
if (is_input_valid(RSNREPLAYPROT, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set RSN replay protection field */
bss->wpa_cfg.rsn_protection = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "PairwiseUpdateTimeout") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
retval = UAP_FAILURE;
goto done;
}
/* Set Pairwise Update Timeout field */
bss->pairwise_update_timeout = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "PairwiseHandshakeRetries") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
retval = UAP_FAILURE;
goto done;
}
/* Set Pairwise Hanshake Retries */
bss->pwk_retries = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "GroupwiseUpdateTimeout") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
retval = UAP_FAILURE;
goto done;
}
/* Set Groupwise Update Timeout field */
bss->groupwise_update_timeout = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "GroupwiseHandshakeRetries") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0)) {
retval = UAP_FAILURE;
goto done;
}
/* Set Groupwise Hanshake Retries */
bss->gwk_retries = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "TxBeaconRate") == 0) {
if (is_input_valid(TXBEACONRATE, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
tx_beacon_rate = (t_u16)A2HEXDECIMAL(args[1]);
}
if (strcmp(args[0], "MCBCdataRate") == 0) {
if (is_input_valid(MCBCDATARATE, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
mcbc_data_rate = (t_u16)A2HEXDECIMAL(args[1]);
}
if (strcmp(args[0], "PktFwdCtl") == 0) {
if (is_input_valid(PKTFWD, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set packet forward control field */
bss->pkt_forward_ctl = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "StaAgeoutTimer") == 0) {
if (is_input_valid
(STAAGEOUTTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set STA ageout timer field */
bss->sta_ageout_timer = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "PSStaAgeoutTimer") == 0) {
if (is_input_valid
(PSSTAAGEOUTTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set PS STA ageout timer field */
bss->ps_sta_ageout_timer = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "AuthMode") == 0) {
if (is_input_valid(AUTHMODE, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set auth mode field */
bss->auth_mode = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "KeyIndex") == 0) {
if (arg_num == 1) {
printf("KeyIndex is blank!\n");
retval = UAP_FAILURE;
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal KeyIndex parameter. Must be either '0', '1', '2', or '3'.\n");
retval = UAP_FAILURE;
goto done;
}
keyindex = atoi(args[1]);
if ((keyindex < 0) || (keyindex > 3)) {
printf("ERR:Illegal KeyIndex parameter. Must be either '0', '1', '2', or '3'.\n");
retval = UAP_FAILURE;
goto done;
}
switch (keyindex) {
case 0:
bss->wep_cfg.key0.is_default = 1;
break;
case 1:
bss->wep_cfg.key1.is_default = 1;
break;
case 2:
bss->wep_cfg.key2.is_default = 1;
break;
case 3:
bss->wep_cfg.key3.is_default = 1;
break;
}
}
}
if (strncmp(args[0], "Key_", 4) == 0) {
if (arg_num == 1) {
printf("ERR:%s is blank!\n", args[0]);
retval = UAP_FAILURE;
goto done;
} else {
int key_len = 0;
if (args[1][0] == '"') {
if ((strlen(args[1]) != 2) &&
(strlen(args[1]) != 7) &&
(strlen(args[1]) != 15)) {
printf("ERR:Wrong key length!\n");
retval = UAP_FAILURE;
goto done;
}
key_len = strlen(args[1]) - 2;
} else {
if ((strlen(args[1]) != 0) &&
(strlen(args[1]) != 10) &&
(strlen(args[1]) != 26)) {
printf("ERR:Wrong key length!\n");
retval = UAP_FAILURE;
goto done;
}
if (UAP_FAILURE == ishexstring(args[1])) {
printf("ERR:Only hex digits are allowed when key length is 10 or 26\n");
retval = UAP_FAILURE;
goto done;
}
key_len = strlen(args[1]) / 2;
}
/* Set WEP key fields */
if (strcmp(args[0], "Key_0") == 0) {
bss->wep_cfg.key0.key_index = 0;
bss->wep_cfg.key0.length = key_len;
if (args[1][0] == '"') {
memcpy(bss->wep_cfg.key0.key,
&args[1][1],
strlen(args[1]) - 2);
} else {
string2raw(args[1],
bss->wep_cfg.key0.
key);
}
} else if (strcmp(args[0], "Key_1") == 0) {
bss->wep_cfg.key1.key_index = 1;
bss->wep_cfg.key1.length = key_len;
if (args[1][0] == '"') {
memcpy(bss->wep_cfg.key1.key,
&args[1][1],
strlen(args[1]) - 2);
} else {
string2raw(args[1],
bss->wep_cfg.key1.
key);
}
} else if (strcmp(args[0], "Key_2") == 0) {
bss->wep_cfg.key2.key_index = 2;
bss->wep_cfg.key2.length = key_len;
if (args[1][0] == '"') {
memcpy(bss->wep_cfg.key2.key,
&args[1][1],
strlen(args[1]) - 2);
} else {
string2raw(args[1],
bss->wep_cfg.key2.
key);
}
} else if (strcmp(args[0], "Key_3") == 0) {
bss->wep_cfg.key3.key_index = 3;
bss->wep_cfg.key3.length = key_len;
if (args[1][0] == '"') {
memcpy(bss->wep_cfg.key3.key,
&args[1][1],
strlen(args[1]) - 2);
} else {
string2raw(args[1],
bss->wep_cfg.key3.
key);
}
}
}
}
if (strcmp(args[0], "PSK") == 0) {
if (arg_num == 1) {
printf("ERR:PSK is blank!\n");
retval = UAP_FAILURE;
goto done;
} else {
if (args[1][0] == '"') {
args[1]++;
}
if (args[1][strlen(args[1]) - 1] == '"') {
args[1][strlen(args[1]) - 1] = '\0';
}
if (strlen(args[1]) > MAX_WPA_PASSPHRASE_LENGTH) {
printf("ERR:PSK too long.\n");
retval = UAP_FAILURE;
goto done;
}
if (strlen(args[1]) < MIN_WPA_PASSPHRASE_LENGTH) {
printf("ERR:PSK too short.\n");
retval = UAP_FAILURE;
goto done;
}
if (strlen(args[1]) ==
MAX_WPA_PASSPHRASE_LENGTH) {
if (UAP_FAILURE == ishexstring(args[1])) {
printf("ERR:Only hex digits are allowed when passphrase's length is 64\n");
retval = UAP_FAILURE;
goto done;
}
}
/* Set WPA passphrase field */
bss->wpa_cfg.length = strlen(args[1]);
memcpy(bss->wpa_cfg.passphrase, args[1],
bss->wpa_cfg.length);
}
}
if (strcmp(args[0], "Protocol") == 0) {
if (is_input_valid(PROTOCOL, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set protocol field */
protocol = (t_u16)atoi(args[1]);
}
if ((strcmp(args[0], "PairwiseCipher") == 0) ||
(strcmp(args[0], "GroupCipher") == 0)) {
printf("ERR:PairwiseCipher and GroupCipher are not supported.\n" " Please configure pairwise cipher using parameters PwkCipherWPA or PwkCipherWPA2\n" " and group cipher using GwkCipher in the config file.\n");
goto done;
}
if ((protocol == PROTOCOL_NO_SECURITY) ||
(protocol == PROTOCOL_STATIC_WEP)) {
if ((strcmp(args[0], "PwkCipherWPA") == 0) ||
(strcmp(args[0], "PwkCipherWPA2") == 0)
|| (strcmp(args[0], "GwkCipher") == 0)) {
printf("ERR:Pairwise cipher and group cipher should not be defined for Open and WEP mode.\n");
goto done;
}
}
if (strcmp(args[0], "PwkCipherWPA") == 0) {
if (arg_num == 1) {
printf("ERR:PwkCipherWPA is blank!\n");
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal PwkCipherWPA parameter. Must be either bit '2' or '3'.\n");
goto done;
}
if (atoi(args[1]) & ~CIPHER_BITMAP) {
printf("ERR:Illegal PwkCipherWPA parameter. Must be either bit '2' or '3'.\n");
goto done;
}
pwkcipher_wpa = atoi(args[1]);
if (enable_11n &&
protocol != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS ==
get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]
&& (atoi(args[1]) ==
CIPHER_TKIP)) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
}
}
}
if (strcmp(args[0], "PwkCipherWPA2") == 0) {
if (arg_num == 1) {
printf("ERR:PwkCipherWPA2 is blank!\n");
goto done;
} else {
if (ISDIGIT(args[1]) == 0) {
printf("ERR:Illegal PwkCipherWPA2 parameter. Must be either bit '2' or '3'.\n");
goto done;
}
if (atoi(args[1]) & ~CIPHER_BITMAP) {
printf("ERR:Illegal PwkCipherWPA2 parameter. Must be either bit '2' or '3'.\n");
goto done;
}
pwkcipher_wpa2 = atoi(args[1]);
if (enable_11n &&
protocol != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS ==
get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]
&& (atoi(args[1]) ==
CIPHER_TKIP)) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
}
}
}
if (strcmp(args[0], "GwkCipher") == 0) {
if (is_input_valid(GWK_CIPHER, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
goto done;
}
gwkcipher = atoi(args[1]);
}
if (strcmp(args[0], "GroupRekeyTime") == 0) {
if (is_input_valid
(GROUPREKEYTIMER, arg_num - 1,
args + 1) != UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set group rekey time field */
bss->wpa_cfg.gk_rekey_time = (t_u32)atoi(args[1]);
}
if (strcmp(args[0], "MaxStaNum") == 0) {
if (is_input_valid(MAXSTANUM, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
if (get_max_sta_num_supported(&max_sta_num_supported) ==
UAP_FAILURE) {
retval = UAP_FAILURE;
goto done;
}
if (atoi(args[1]) > max_sta_num_supported) {
printf("ERR: MAX_STA_NUM must be less than %d\n", max_sta_num_supported);
retval = UAP_FAILURE;
goto done;
}
/* Set max STA number field */
bss->max_sta_count = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "Retrylimit") == 0) {
if (is_input_valid(RETRYLIMIT, arg_num - 1, args + 1) !=
UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set retry limit field */
bss->retry_limit = (t_u16)atoi(args[1]);
}
if (strcmp(args[0], "PreambleType") == 0) {
if (is_input_valid(PREAMBLETYPE, arg_num - 1, args + 1)
!= UAP_SUCCESS) {
retval = UAP_FAILURE;
goto done;
}
/* Set preamble type field */
bss->preamble_type = (t_u8)atoi(args[1]);
}
if (strcmp(args[0], "Enable11n") == 0) {
if ((ISDIGIT(args[1]) != UAP_SUCCESS) ||
(atoi(args[1]) < 0) || (atoi(args[1]) > 1)) {
printf("ERR: Invalid Enable11n value\n");
goto done;
}
enable_11n = atoi(args[1]);
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS != get_sys_cfg_11n(&htcap)) {
printf("ERR: Reading current 11n configuration.\n");
goto done;
}
bss->ht_cap_info = htcap.ht_cap_info;
bss->ampdu_param = htcap.ampdu_param;
memcpy(bss->supported_mcs_set, htcap.supported_mcs_set,
16);
bss->ht_ext_cap = htcap.ht_ext_cap;
bss->tx_bf_cap = htcap.tx_bf_cap;
bss->asel = htcap.asel;
if (enable_11n == 1) {
/* enable mcs rate */
bss->supported_mcs_set[0] = DEFAULT_MCS_SET_0;
bss->supported_mcs_set[4] = DEFAULT_MCS_SET_4;
if (0 == get_fw_info(&fw)) {
if ((fw.hw_dev_mcs_support & 0x0f) >= 2)
bss->supported_mcs_set[1] =
DEFAULT_MCS_SET_1;
}
} else {
/* disable mcs rate */
bss->supported_mcs_set[0] = 0;
bss->supported_mcs_set[4] = 0;
bss->supported_mcs_set[1] = 0;
}
}
if (strcmp(args[0], "HTCapInfo") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before HTCapInfo.\n");
goto done;
}
if ((IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE) ||
((((t_u16)A2HEXDECIMAL(args[1])) &
(~HT_CAP_CONFIG_MASK)) != HT_CAP_CHECK_MASK)) {
printf("ERR: Invalid HTCapInfo value\n");
goto done;
}
bss->ht_cap_info =
DEFAULT_HT_CAP_VALUE & ~HT_CAP_CONFIG_MASK;
bss->ht_cap_info |=
(t_u16)A2HEXDECIMAL(args[1]) &
HT_CAP_CONFIG_MASK;
bss->ht_cap_info = uap_cpu_to_le16(bss->ht_cap_info);
}
if (strcmp(args[0], "AMPDU") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before AMPDU.\n");
goto done;
}
if ((IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE) ||
((A2HEXDECIMAL(args[1])) > AMPDU_CONFIG_MASK)) {
printf("ERR: Invalid AMPDU value\n");
goto done;
}
/* Find HT tlv pointer in buffer and set AMPDU */
bss->ampdu_param =
(t_u8)A2HEXDECIMAL(args[1]) & AMPDU_CONFIG_MASK;
}
if (strcmp(args[0], "HT_MCS_MAP") == 0) {
if (enable_11n <= 0) {
printf("ERR: Enable11n parameter should be set before HT_MCS_MAP.\n");
goto done;
}
if ((IS_HEX_OR_DIGIT(args[1]) == UAP_FAILURE)) {
printf("ERR: Invalid HT_MCS_MAP value\n");
goto done;
}
if (0 == get_fw_info(&fw)) {
/* Check upper nibble of MCS support value
* and block MCS_SET_1 when 2X2 is not supported
* by the underlying hardware */
if (((fw.hw_dev_mcs_support & 0xf0) <
STREAM_2X2_MASK) &&
(A2HEXDECIMAL(args[1]) & MCS_SET_1_MASK)) {
printf("ERR: Invalid HT_MCS_MAP\n");
goto done;
}
}
supported_mcs_set = (t_u32)A2HEXDECIMAL(args[1]);
supported_mcs_set = uap_cpu_to_le32(supported_mcs_set);
memcpy(bss->supported_mcs_set, &supported_mcs_set,
sizeof(t_u32));
}
if (strcmp(args[0], "Enable2040Coex") == 0) {
if ((ISDIGIT(args[1]) == 0) || (atoi(args[1]) < 0) ||
(atoi(args[1]) > 1)) {
printf("ERR:Invalid Enable2040Coex value.\n");
goto done;
}
bss->enable_2040coex = (t_u8)atoi(args[1]);
}
}
done:
fclose(config_file);
if (line)
free(line);
return retval;
}
/**
* @brief Show all the BSS configuration in the buffer
*
* @param buf Pointer to BSS configuration buffer
*
* $return N/A
*/
void
print_bss_config(bss_config_t *buf)
{
int i = 0;
int flag = 0;
if (!buf) {
printf("ERR:Empty BSS config!\n");
return;
}
/* Print AP MAC address */
printf("AP MAC address = ");
print_mac(buf->mac_addr);
printf("\n");
/* Print SSID */
if (buf->ssid.ssid_len) {
printf("SSID = %s\n", buf->ssid.ssid);
}
/* Print broadcast SSID control */
printf("SSID broadcast = %s\n",
(buf->bcast_ssid_ctl == 1) ? "enabled" : "disabled");
/* Print DTIM period */
printf("DTIM period = %d\n", buf->dtim_period);
/* Print beacon period */
printf("Beacon period = %d\n", buf->beacon_period);
/* Print rates */
printf("Basic Rates =");
for (i = 0; i < MAX_DATA_RATES; i++) {
if (!buf->rates[i])
break;
if (buf->rates[i] > (BASIC_RATE_SET_BIT - 1)) {
flag = flag ? : 1;
printf(" 0x%x", buf->rates[i]);
}
}
printf("%s\nNon-Basic Rates =", flag ? "" : " ( none ) ");
for (flag = 0, i = 0; i < MAX_DATA_RATES; i++) {
if (!buf->rates[i])
break;
if (buf->rates[i] < BASIC_RATE_SET_BIT) {
flag = flag ? : 1;
printf(" 0x%x", buf->rates[i]);
}
}
printf("%s\n", flag ? "" : " ( none ) ");
/* Print Tx data rate */
printf("Tx data rate = ");
if (buf->tx_data_rate == 0)
printf("auto\n");
else
printf("0x%x\n", buf->tx_data_rate);
/* Print MCBC data rate */
printf("MCBC data rate = ");
if (buf->mcbc_data_rate == 0)
printf("auto\n");
else
printf("0x%x\n", buf->mcbc_data_rate);
/* Print Tx power level */
printf("Tx power = %d dBm\n", buf->tx_power_level);
/* Print Tx antenna */
printf("Tx antenna = %s\n", (buf->tx_antenna) ? "B" : "A");
/* Print Rx antenna */
printf("Rx antenna = %s\n", (buf->rx_antenna) ? "B" : "A");
/* Print packet forward control */
printf("%s handles packet forwarding -\n",
((buf->pkt_forward_ctl & PKT_FWD_FW_BIT) ==
0) ? "Host" : "Firmware");
printf("\tIntra-BSS broadcast packets are %s\n",
((buf->pkt_forward_ctl & PKT_FWD_INTRA_BCAST) ==
0) ? "allowed" : "denied");
printf("\tIntra-BSS unicast packets are %s\n",
((buf->pkt_forward_ctl & PKT_FWD_INTRA_UCAST) ==
0) ? "allowed" : "denied");
printf("\tInter-BSS unicast packets are %s\n",
((buf->pkt_forward_ctl & PKT_FWD_INTER_UCAST) ==
0) ? "allowed" : "denied");
/* Print maximum STA count */
printf("Max Station Number configured = %d\n", buf->max_sta_count);
/* Print mgmt frame FWD control */
printf("MGMT frame Fwd Control = 0x%x\n", buf->mgmt_ie_passthru_mask);
/* Print MAC filter */
if (buf->filter.filter_mode == 0) {
printf("Filter Mode = Filter table is disabled\n");
} else {
if (buf->filter.filter_mode == 1) {
printf("Filter Mode = Allow MAC addresses specified in the allowed list\n");
} else if (buf->filter.filter_mode == 2) {
printf("Filter Mode = Block MAC addresses specified in the banned list\n");
} else {
printf("Filter Mode = Unknown\n");
}
for (i = 0; i < buf->filter.mac_count; i++) {
printf("MAC_%d = ", i);
print_mac(buf->filter.mac_list[i]);
printf("\n");
}
}
/* Print STA ageout timer */
printf("STA ageout timer = %d\n", buf->sta_ageout_timer);
/* Print PS STA ageout timer */
printf("PS STA ageout timer = %d\n", buf->ps_sta_ageout_timer);
/* Print RTS threshold */
printf("RTS threshold = %d\n", buf->rts_threshold);
/* Print Fragmentation threshold */
printf("Fragmentation threshold = %d\n", buf->frag_threshold);
/* Print retry limit */
printf("Retry Limit = %d\n", buf->retry_limit);
/* Print preamble type */
printf("Preamble type = %s\n", (buf->preamble_type == 0) ?
"auto" : ((buf->preamble_type == 1) ? "short" : "long"));
/* Print channel */
printf("Channel = %d\n", buf->channel);
printf("Band = %s\n",
(buf->bandcfg.chanBand == BAND_5GHZ) ? "5GHz" : "2.4GHz");
printf("Channel Select Mode = %s\n",
(buf->bandcfg.scanMode == SCAN_MODE_ACS) ? "ACS" : "Manual");
if (buf->bandcfg.chan2Offset == SEC_CHAN_NONE)
printf("no secondary channel\n");
else if (buf->bandcfg.chan2Offset == SEC_CHAN_ABOVE)
printf("secondary channel is above primary channel\n");
else if (buf->bandcfg.chan2Offset == SEC_CHAN_BELOW)
printf("secondary channel is below primary channel\n");
/* Print channel list */
printf("Channels List = ");
for (i = 0; (unsigned int)i < buf->num_of_chan; i++) {
printf("\n%d\t%sGHz", buf->chan_list[i].chan_number,
(buf->chan_list[i].bandcfg.chanBand ==
BAND_5GHZ) ? "5" : "2.4");
}
printf("\n");
/* Print auth mode */
switch (buf->auth_mode) {
case 0:
printf("AUTHMODE = Open authentication\n");
break;
case 1:
printf("AUTHMODE = Shared key authentication\n");
break;
case 3:
printf("AUTHMODE = WPA3 SAE\n");
break;
case 255:
printf("AUTHMODE = Auto (open and shared key)\n");
break;
default:
printf("ERR: Invalid authmode=%d\n", buf->auth_mode);
break;
}
/* Print protocol */
switch (buf->protocol) {
case 0:
case PROTOCOL_NO_SECURITY:
printf("PROTOCOL = No security\n");
break;
case PROTOCOL_STATIC_WEP:
printf("PROTOCOL = Static WEP\n");
break;
case PROTOCOL_WPA:
printf("PROTOCOL = WPA \n");
break;
case PROTOCOL_WPA2:
printf("PROTOCOL = WPA2 \n");
break;
case PROTOCOL_WPA | PROTOCOL_WPA2:
printf("PROTOCOL = WPA/WPA2 \n");
break;
case PROTOCOL_WPA3_SAE:
printf("PROTOCOL = WPA3 SAE \n");
break;
default:
printf("Unknown PROTOCOL: 0x%x \n", buf->protocol);
break;
}
/* Print key management */
if (buf->key_mgmt == KEY_MGMT_PSK)
printf("KeyMgmt = PSK\n");
else
printf("KeyMgmt = NONE\n");
/* Print WEP configurations */
if (buf->wep_cfg.key0.length) {
printf("WEP KEY_0 = ");
for (i = 0; i < buf->wep_cfg.key0.length; i++) {
printf("%02x ", buf->wep_cfg.key0.key[i]);
}
(buf->wep_cfg.key0.
is_default) ? (printf("<Default>\n")) : (printf("\n"));
} else {
printf("WEP KEY_0 = NONE\n");
}
if (buf->wep_cfg.key1.length) {
printf("WEP KEY_1 = ");
for (i = 0; i < buf->wep_cfg.key1.length; i++) {
printf("%02x ", buf->wep_cfg.key1.key[i]);
}
(buf->wep_cfg.key1.
is_default) ? (printf("<Default>\n")) : (printf("\n"));
} else {
printf("WEP KEY_1 = NONE\n");
}
if (buf->wep_cfg.key2.length) {
printf("WEP KEY_2 = ");
for (i = 0; i < buf->wep_cfg.key2.length; i++) {
printf("%02x ", buf->wep_cfg.key2.key[i]);
}
(buf->wep_cfg.key2.
is_default) ? (printf("<Default>\n")) : (printf("\n"));
} else {
printf("WEP KEY_2 = NONE\n");
}
if (buf->wep_cfg.key3.length) {
printf("WEP KEY_3 = ");
for (i = 0; i < buf->wep_cfg.key3.length; i++) {
printf("%02x ", buf->wep_cfg.key3.key[i]);
}
(buf->wep_cfg.key3.
is_default) ? (printf("<Default>\n")) : (printf("\n"));
} else {
printf("WEP KEY_3 = NONE\n");
}
/* Print WPA configurations */
if (buf->protocol & PROTOCOL_WPA) {
switch (buf->wpa_cfg.pairwise_cipher_wpa) {
case CIPHER_TKIP:
printf("PwkCipherWPA = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("PwkCipherWPA = AES CCMP\n");
break;
case CIPHER_TKIP | CIPHER_AES_CCMP:
printf("PwkCipherWPA = TKIP + AES CCMP\n");
break;
case CIPHER_NONE:
printf("PwkCipherWPA = None\n");
break;
default:
printf("Unknown PwkCipherWPA 0x%x\n",
buf->wpa_cfg.pairwise_cipher_wpa);
break;
}
}
if (buf->protocol & (PROTOCOL_WPA2 | PROTOCOL_WPA3_SAE)) {
switch (buf->wpa_cfg.pairwise_cipher_wpa2) {
case CIPHER_TKIP:
printf("PwkCipherWPA2 = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("PwkCipherWPA2 = AES CCMP\n");
break;
case CIPHER_TKIP | CIPHER_AES_CCMP:
printf("PwkCipherWPA2 = TKIP + AES CCMP\n");
break;
case CIPHER_NONE:
printf("PwkCipherWPA2 = None\n");
break;
default:
printf("Unknown PwkCipherWPA2 0x%x\n",
buf->wpa_cfg.pairwise_cipher_wpa2);
break;
}
}
switch (buf->wpa_cfg.group_cipher) {
case CIPHER_TKIP:
printf("GroupCipher = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("GroupCipher = AES CCMP\n");
break;
case CIPHER_NONE:
printf("GroupCipher = None\n");
break;
default:
printf("Unknown Group cipher 0x%x\n",
buf->wpa_cfg.group_cipher);
break;
}
printf("RSN replay protection = %s\n",
(buf->wpa_cfg.rsn_protection) ? "enabled" : "disabled");
printf("Pairwise Handshake timeout = %d\n",
buf->pairwise_update_timeout);
printf("Pairwise Handshake Retries = %d\n", buf->pwk_retries);
printf("Groupwise Handshake timeout = %d\n",
buf->groupwise_update_timeout);
printf("Groupwise Handshake Retries = %d\n", buf->gwk_retries);
if (buf->wpa_cfg.length > 0) {
printf("WPA passphrase = ");
for (i = 0; (unsigned int)i < buf->wpa_cfg.length; i++)
printf("%c", buf->wpa_cfg.passphrase[i]);
printf("\n");
} else {
printf("WPA passphrase = None\n");
}
if (buf->wpa_cfg.gk_rekey_time == 0)
printf("Group re-key time = disabled\n");
else
printf("Group re-key time = %d second\n",
buf->wpa_cfg.gk_rekey_time);
printf("20/40 coex = %s\n",
(buf->enable_2040coex) ? "enabled" : "disabled");
printf("wmm parameters:\n");
printf("\tqos_info = 0x%x\n", buf->wmm_para.qos_info);
printf("\tBE: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
buf->wmm_para.ac_params[AC_BE].aci_aifsn.aifsn,
buf->wmm_para.ac_params[AC_BE].ecw.ecw_max,
buf->wmm_para.ac_params[AC_BE].ecw.ecw_min,
buf->wmm_para.ac_params[AC_BE].tx_op_limit);
printf("\tBK: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
buf->wmm_para.ac_params[AC_BK].aci_aifsn.aifsn,
buf->wmm_para.ac_params[AC_BK].ecw.ecw_max,
buf->wmm_para.ac_params[AC_BK].ecw.ecw_min,
buf->wmm_para.ac_params[AC_BK].tx_op_limit);
printf("\tVI: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
buf->wmm_para.ac_params[AC_VI].aci_aifsn.aifsn,
buf->wmm_para.ac_params[AC_VI].ecw.ecw_max,
buf->wmm_para.ac_params[AC_VI].ecw.ecw_min,
buf->wmm_para.ac_params[AC_VI].tx_op_limit);
printf("\tVO: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
buf->wmm_para.ac_params[AC_VO].aci_aifsn.aifsn,
buf->wmm_para.ac_params[AC_VO].ecw.ecw_max,
buf->wmm_para.ac_params[AC_VO].ecw.ecw_min,
buf->wmm_para.ac_params[AC_VO].tx_op_limit);
return;
}
/**
* @brief Send command to Read the BSS profile
*
* @param buf Pointer to bss command buffer for get
* @return UAP_SUCCESS or UAP_FAILURE
*/
static int
get_bss_config(t_u8 *buf)
{
apcmdbuf_bss_configure *cmd_buf = NULL;
t_s32 sockfd;
struct ifreq ifr;
cmd_buf = (apcmdbuf_bss_configure *)buf;
cmd_buf->action = ACTION_GET;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
#if DEBUG
/* Dump request buffer */
hexdump("Get Request buffer", (void *)buf,
sizeof(apcmdbuf_bss_configure)
+ sizeof(bss_config_t), ' ');
#endif
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)cmd_buf;
if (ioctl(sockfd, UAP_BSS_CONFIG, &ifr)) {
printf("ERR:UAP_BSS_CONFIG is not supported by %s\n", dev_name);
close(sockfd);
return UAP_FAILURE;
}
#if DEBUG
/* Dump request buffer */
hexdump("Get Response buffer", (void *)buf,
sizeof(apcmdbuf_bss_configure)
+ sizeof(bss_config_t), ' ');
#endif
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Creates a bss_config request and sends to the driver
*
* Usage: "Usage : bss_config [CONFIG_FILE]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_bss_config(int argc, char *argv[])
{
apcmdbuf_bss_configure *cmd_buf = NULL;
bss_config_t *bss = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len;
t_u16 buf_len;
int ret = UAP_SUCCESS;
int opt;
t_s32 sockfd;
struct ifreq ifr;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_bss_config_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 1) {
printf("ERR:Too many arguments.\n");
print_bss_config_usage();
return UAP_FAILURE;
}
/* Query BSS settings */
/* Alloc buf for command */
buf_len = sizeof(apcmdbuf_bss_configure) + sizeof(bss_config_t);
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset((char *)buf, 0, buf_len);
/* Locate headers */
cmd_len = sizeof(apcmdbuf_bss_configure);
cmd_buf = (apcmdbuf_bss_configure *)buf;
bss = (bss_config_t *)(buf + cmd_len);
/* Get all parametes first */
if (get_bss_config(buf) == UAP_FAILURE) {
printf("ERR:Reading current parameters\n");
free(buf);
return UAP_FAILURE;
}
if (argc == 1) {
/* Parse config file and populate structure */
ret = parse_bss_config(argc, argv, bss);
if (ret == UAP_FAILURE) {
free(buf);
return ret;
}
cmd_len += sizeof(bss_config_t);
cmd_buf->action = ACTION_SET;
/* Send the command */
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
free(buf);
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)cmd_buf;
#if DEBUG
/* Dump request buffer */
hexdump("Request buffer", (void *)buf, buf_len, ' ');
#endif
if (ioctl(sockfd, UAP_BSS_CONFIG, &ifr)) {
perror("");
printf("ERR:UAP_BSS_CONFIG is not supported by %s\n",
dev_name);
close(sockfd);
free(buf);
return UAP_FAILURE;
}
#if DEBUG
/* Dump respond buffer */
hexdump("Respond buffer", (void *)buf, buf_len, ' ');
#endif
close(sockfd);
} else {
/* Print response */
printf("BSS settings:\n");
print_bss_config(bss);
}
free(buf);
return ret;
}
/**
* @brief Read the profile and sends to the driver
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
apcmd_coex_config_profile(int argc, char *argv[])
{
FILE *config_file = NULL;
char *line = NULL;
int i, index, li = 0;
int ret = UAP_SUCCESS;
char *pos = NULL;
int arg_num = 0;
char *args[30];
int is_coex_config = 0;
int is_coex_common_config = 0;
int is_coex_sco_config = 0;
int is_coex_acl_config = 0;
t_u8 *buf = NULL;
apcmdbuf_coex_config *cmd_buf = NULL;
tlvbuf_coex_common_cfg *coex_common_tlv;
tlvbuf_coex_sco_cfg *coex_sco_tlv;
tlvbuf_coex_acl_cfg *coex_acl_tlv;
t_u16 acl_enabled = 0;
t_u32 conf_bitmap = 0;
t_u32 ap_coex_enable = 0;
t_u16 cmd_len = 0, tlv_len = 0;
t_u16 sco_prot_qtime[4] = { 0, 0, 0, 0 }, sco_prot_rate =
0, sco_acl_freq = 0;
t_u16 acl_bt_time = 0, acl_wlan_time = 0, acl_prot_rate = 0;
/* Check if file exists */
config_file = fopen(argv[0], "r");
if (config_file == NULL) {
printf("\nERR:Config file can not open.\n");
return UAP_FAILURE;
}
line = (char *)malloc(MAX_CONFIG_LINE);
if (!line) {
printf("ERR:Cannot allocate memory for line\n");
ret = UAP_FAILURE;
goto done;
}
bzero(line, MAX_CONFIG_LINE);
/* fixed command length */
cmd_len = sizeof(apcmdbuf_coex_config) + sizeof(tlvbuf_coex_common_cfg)
+ sizeof(tlvbuf_coex_sco_cfg) + sizeof(tlvbuf_coex_acl_cfg);
/* alloc buf for command */
buf = (t_u8 *)malloc(cmd_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
ret = UAP_FAILURE;
goto done;
}
bzero((char *)buf, cmd_len);
cmd_buf = (apcmdbuf_coex_config *)buf;
/* Fill the command buffer */
cmd_buf->cmd_code = HostCmd_ROBUST_COEX;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->action = uap_cpu_to_le16(ACTION_SET);
/* Parse file and process */
while (config_get_line(line, MAX_CONFIG_LINE, config_file, &li, &pos)) {
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Received config line (%d) = %s\n",
li, line);
#endif
arg_num = parse_line(line, args);
#if DEBUG
uap_printf(MSG_DEBUG, "DBG:Number of arguments = %d\n",
arg_num);
for (i = 0; i < arg_num; i++) {
uap_printf(MSG_DEBUG, "\tDBG:Argument %d. %s\n", i + 1,
args[i]);
}
#endif
/* Check for end of Coex configurations */
if (is_coex_acl_config == 1) {
if (strcmp(args[0], "}") == 0) {
coex_acl_tlv =
(tlvbuf_coex_acl_cfg *)(cmd_buf->
tlv_buffer +
tlv_len);
coex_acl_tlv->tag = MRVL_BT_COEX_ACL_CFG_TLV_ID;
coex_acl_tlv->length =
sizeof(tlvbuf_coex_acl_cfg) -
sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_acl_tlv);
coex_acl_tlv->enabled =
uap_cpu_to_le16(acl_enabled);
coex_acl_tlv->bt_time =
uap_cpu_to_le16(acl_bt_time);
coex_acl_tlv->wlan_time =
uap_cpu_to_le16(acl_wlan_time);
coex_acl_tlv->protection_rate =
uap_cpu_to_le16(acl_prot_rate);
tlv_len += sizeof(tlvbuf_coex_acl_cfg);
is_coex_acl_config = 0;
}
} else if (is_coex_sco_config == 1) {
if (strcmp(args[0], "}") == 0) {
coex_sco_tlv =
(tlvbuf_coex_sco_cfg *)(cmd_buf->
tlv_buffer +
tlv_len);
coex_sco_tlv->tag = MRVL_BT_COEX_SCO_CFG_TLV_ID;
coex_sco_tlv->length =
sizeof(tlvbuf_coex_sco_cfg) -
sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_sco_tlv);
for (i = 0; i < 4; i++)
coex_sco_tlv->protection_qtime[i] =
uap_cpu_to_le16(sco_prot_qtime
[i]);
coex_sco_tlv->protection_rate =
uap_cpu_to_le16(sco_prot_rate);
coex_sco_tlv->acl_frequency =
uap_cpu_to_le16(sco_acl_freq);
tlv_len += sizeof(tlvbuf_coex_sco_cfg);
is_coex_sco_config = 0;
}
} else if (is_coex_common_config == 1) {
if (strcmp(args[0], "}") == 0) {
coex_common_tlv =
(tlvbuf_coex_common_cfg *)(cmd_buf->
tlv_buffer +
tlv_len);
coex_common_tlv->tag =
MRVL_BT_COEX_COMMON_CFG_TLV_ID;
coex_common_tlv->length =
sizeof(tlvbuf_coex_common_cfg) -
sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_common_tlv);
coex_common_tlv->config_bitmap =
uap_cpu_to_le32(conf_bitmap);
coex_common_tlv->ap_bt_coex =
uap_cpu_to_le32(ap_coex_enable);
tlv_len += sizeof(tlvbuf_coex_common_cfg);
is_coex_common_config = 0;
}
} else if (is_coex_config == 1) {
if (strcmp(args[0], "}") == 0)
is_coex_config = 0;
}
if (strcmp(args[0], "coex_config") == 0) {
is_coex_config = 1;
} else if (strcmp(args[0], "common_config") == 0) {
is_coex_common_config = 1;
} else if (strcmp(args[0], "sco_config") == 0) {
is_coex_sco_config = 1;
} else if (strcmp(args[0], "acl_config") == 0) {
is_coex_acl_config = 1;
}
if ((strcmp(args[0], "bitmap") == 0) && is_coex_common_config) {
if (is_input_valid
(COEX_COMM_BITMAP, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
conf_bitmap = (t_u32)A2HEXDECIMAL(args[1]);
} else if ((strcmp(args[0], "APBTCoex") == 0) &&
is_coex_common_config) {
if (is_input_valid
(COEX_COMM_AP_COEX, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
ap_coex_enable = (t_u32)A2HEXDECIMAL(args[1]);
} else if ((strncmp(args[0], "protectionFromQTime", 19) == 0) &&
is_coex_sco_config) {
index = atoi(args[0] + strlen("protectionFromQTime"));
if (index < 0 || index > 3) {
printf("ERR:Incorrect index %d.\n", index);
ret = UAP_FAILURE;
goto done;
}
if (is_input_valid(COEX_PROTECTION, arg_num, args) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
sco_prot_qtime[index] = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "scoProtectionFromRate") == 0) &&
is_coex_sco_config) {
if (is_input_valid(COEX_PROTECTION, arg_num, args) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
sco_prot_rate = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "aclFrequency") == 0) &&
is_coex_sco_config) {
if (is_input_valid
(COEX_SCO_ACL_FREQ, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
sco_acl_freq = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "enabled") == 0) &&
is_coex_acl_config) {
if (is_input_valid
(COEX_ACL_ENABLED, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
acl_enabled = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "btTime") == 0) &&
is_coex_acl_config) {
if (is_input_valid
(COEX_ACL_BT_TIME, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
acl_bt_time = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "wlanTime") == 0) &&
is_coex_acl_config) {
if (is_input_valid
(COEX_ACL_WLAN_TIME, arg_num - 1,
args + 1) != UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
acl_wlan_time = (t_u16)atoi(args[1]);
} else if ((strcmp(args[0], "aclProtectionFromRate") == 0) &&
is_coex_acl_config) {
if (is_input_valid(COEX_PROTECTION, arg_num, args) !=
UAP_SUCCESS) {
ret = UAP_FAILURE;
goto done;
}
acl_prot_rate = (t_u16)atoi(args[1]);
}
}
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, cmd_len);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (cmd_buf->cmd_code !=
(HostCmd_ROBUST_COEX | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response!\n");
ret = UAP_FAILURE;
goto done;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
printf("BT Coex settings sucessfully set.\n");
} else {
printf("ERR:Could not set coex configuration.\n");
}
} else {
printf("ERR:Command sending failed!\n");
}
done:
fclose(config_file);
if (buf)
free(buf);
if (line)
free(line);
return ret;
}
/**
* @brief Show usage information for the coex_config command
*
* $return N/A
*/
void
print_coex_config_usage(void)
{
printf("\nUsage : coex_config [CONFIG_FILE]\n");
printf("\nIf CONFIG_FILE is provided, a 'set' is performed, else a 'get' is performed.\n");
return;
}
/**
* @brief Creates a coex_config request and sends to the driver
*
* Usage: "Usage : coex_config [CONFIG_FILE]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
apcmd_coex_config(int argc, char *argv[])
{
apcmdbuf_coex_config *cmd_buf = NULL;
tlvbuf_coex_common_cfg *coex_common_tlv;
tlvbuf_coex_sco_cfg *coex_sco_tlv;
tlvbuf_coex_acl_cfg *coex_acl_tlv;
tlvbuf_coex_stats *coex_stats_tlv;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
int opt;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_coex_config_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 1) {
printf("ERR:Too many arguments.\n");
print_coex_config_usage();
return UAP_FAILURE;
}
if (argc == 1) {
/* Read profile and send command to firmware */
ret = apcmd_coex_config_profile(argc, argv);
return ret;
}
/* fixed command length */
cmd_len = sizeof(apcmdbuf_coex_config) + sizeof(tlvbuf_coex_common_cfg)
+ sizeof(tlvbuf_coex_sco_cfg) + sizeof(tlvbuf_coex_acl_cfg)
+ sizeof(tlvbuf_coex_stats);
/* alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
bzero((char *)buf, buf_len);
cmd_buf = (apcmdbuf_coex_config *)buf;
coex_common_tlv = (tlvbuf_coex_common_cfg *)cmd_buf->tlv_buffer;
coex_common_tlv->tag = MRVL_BT_COEX_COMMON_CFG_TLV_ID;
coex_common_tlv->length =
sizeof(tlvbuf_coex_common_cfg) - sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_common_tlv);
coex_sco_tlv = (tlvbuf_coex_sco_cfg *)(cmd_buf->tlv_buffer +
sizeof(tlvbuf_coex_common_cfg));
coex_sco_tlv->tag = MRVL_BT_COEX_SCO_CFG_TLV_ID;
coex_sco_tlv->length =
sizeof(tlvbuf_coex_sco_cfg) - sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_sco_tlv);
coex_acl_tlv = (tlvbuf_coex_acl_cfg *)(cmd_buf->tlv_buffer +
sizeof(tlvbuf_coex_common_cfg) +
sizeof(tlvbuf_coex_sco_cfg));
coex_acl_tlv->tag = MRVL_BT_COEX_ACL_CFG_TLV_ID;
coex_acl_tlv->length =
sizeof(tlvbuf_coex_acl_cfg) - sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_acl_tlv);
coex_stats_tlv = (tlvbuf_coex_stats *)(cmd_buf->tlv_buffer +
sizeof(tlvbuf_coex_common_cfg) +
sizeof(tlvbuf_coex_sco_cfg)
+ sizeof(tlvbuf_coex_acl_cfg));
coex_stats_tlv->tag = MRVL_BT_COEX_STATS_TLV_ID;
coex_stats_tlv->length =
sizeof(tlvbuf_coex_stats) - sizeof(tlvbuf_header);
endian_convert_tlv_header_out(coex_stats_tlv);
/* Fill the command buffer */
cmd_buf->cmd_code = HostCmd_ROBUST_COEX;
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->action = uap_cpu_to_le16(ACTION_GET);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (cmd_buf->cmd_code !=
(HostCmd_ROBUST_COEX | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response!\n");
free(buf);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
printf("BT Coex settings:\n");
print_tlv(buf + sizeof(apcmdbuf_coex_config),
cmd_buf->size - sizeof(apcmdbuf_coex_config) +
BUF_HEADER_SIZE);
} else {
printf("ERR:Could not retrieve coex configuration.\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
free(buf);
return ret;
}
/**
* @brief Show usage information for the mic_err command
*
* $return N/A
*/
void
print_mic_err_usage(void)
{
printf("\nUsage : mic_err <STA_MAC_ADDRESS>\n");
return;
}
/**
* @brief report station mic error to the driver
*
* Usage: "mic_err <STA_MAC_ADDRESS>"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_mic_err(int argc, char *argv[])
{
int ret = UAP_SUCCESS;
int opt;
struct ifreq ifr;
t_s32 sockfd;
t_u8 mac_addr[ETH_ALEN];
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_mic_err_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc != 1) {
printf("ERR:wrong arguments! Must provide STA_MAC_ADDRESS.\n");
print_mic_err_usage();
return UAP_FAILURE;
}
memset(mac_addr, 0, ETH_ALEN);
if ((ret = mac2raw(argv[0], mac_addr)) != UAP_SUCCESS) {
printf("ERR: %s Address\n", ret == UAP_FAILURE ? "Invalid MAC" :
ret ==
UAP_RET_MAC_BROADCAST ? "Broadcast" : "Multicast");
return UAP_FAILURE;
}
#if DEBUG
/* Dump mac address */
hexdump("report mic error", (void *)mac_addr, ETH_ALEN, ' ');
#endif
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)mac_addr;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_REPORT_MIC_ERR, &ifr)) {
perror("");
printf("ERR:UAP_REPORT_MIC_ERR is not supported by %s\n",
dev_name);
close(sockfd);
return UAP_FAILURE;
}
printf("MIC error reporting successful!\n");
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sta_deauth_ext command
*
* $return N/A
*/
void
print_set_key_usage(void)
{
printf("\nUsage : key_material <MAC_ADDRESS> <KEY> [KEY_ID]\n");
printf("\n MAC_ADDRESS: station mac address or ff:ff:ff:ff:ff:ff");
printf("\n KEY: hex string, valid length 32 or 64\n");
return;
}
/**
* @brief Creates a set key request and sends to the driver
*
* Usage: "set_key <MAC_ADDRESS><KEY>[KEY_ID]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_set_key(int argc, char *argv[])
{
int ret = UAP_SUCCESS;
int opt;
struct ifreq ifr;
t_s32 sockfd;
encrypt_key key;
int key_id = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_set_key_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc < 2 || argc > 3) {
print_set_key_usage();
return UAP_FAILURE;
}
memset(&key, 0, sizeof(encrypt_key));
ret = mac2raw(argv[0], key.mac_addr);
if ((ret != UAP_SUCCESS) && (ret != UAP_RET_MAC_BROADCAST)) {
printf("ERR: %s Address\n",
ret == UAP_FAILURE ? "Invalid MAC" : "Multicast");
return UAP_FAILURE;
}
if ((strlen(argv[1]) != 32) && (strlen(argv[1]) != 64)) {
printf("ERR: key must be hex string with length 32 or 64");
print_set_key_usage();
return UAP_FAILURE;
}
if (UAP_FAILURE == ishexstring(argv[1])) {
printf("ERR:Only hex digits are allowed\n");
print_set_key_usage();
return UAP_FAILURE;
}
if (argc == 3) {
if ((ISDIGIT(argv[2]) == 0) || (atoi(argv[2]) < 0) ||
(atoi(argv[2]) > 3)) {
printf("ERR:Illegal key id %s. Must be either '0', '1', '2', or '3'.\n", argv[2]);
print_set_key_usage();
return UAP_FAILURE;
}
key_id = atoi(argv[2]);
}
key.key_len = strlen(argv[1]) / 2;
string2raw(argv[1], key.key_material);
key.key_index = key_id;
#if DEBUG
/* dump key buffer */
hexdump("set key", (void *)&key, sizeof(encrypt_key), ' ');
#endif
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&key;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_SET_KEY, &ifr)) {
perror("");
printf("ERR:UAP_SET_KEY is not supported by %s\n", dev_name);
close(sockfd);
return UAP_FAILURE;
}
printf("Key setting successful.\n");
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sys_cfg_custom_ie
* command
*
* $return N/A
*/
void
print_sys_cfg_custom_ie_usage(void)
{
printf("\nUsage : sys_cfg_custom_ie [INDEX] [MASK] [IEBuffer]");
printf("\n empty - Get all IE settings\n");
printf("\n INDEX: 0 - Get/Set IE index 0 setting");
printf("\n 1 - Get/Set IE index 1 setting");
printf("\n 2 - Get/Set IE index 2 setting");
printf("\n 3 - Get/Set IE index 3 setting");
printf("\n . ");
printf("\n . ");
printf("\n . ");
printf("\n -1 - Append/Delete IE automatically");
printf("\n Delete will delete the IE from the matching IE buffer");
printf("\n Append will append the IE to the buffer with the same mask");
printf("\n MASK : Management subtype mask value as per bit defintions");
printf("\n : Bit 0 - Association request.");
printf("\n : Bit 1 - Association response.");
printf("\n : Bit 2 - Reassociation request.");
printf("\n : Bit 3 - Reassociation response.");
printf("\n : Bit 4 - Probe request.");
printf("\n : Bit 5 - Probe response.");
printf("\n : Bit 8 - Beacon.");
printf("\n MASK : MASK = 0 to clear the mask and the IE buffer");
printf("\n IEBuffer : IE Buffer in hex (max 256 bytes)\n\n");
return;
}
/** custom IE, auto mask value */
#define UAP_CUSTOM_IE_AUTO_MASK 0xffff
/**
* @brief Get max management IE index
* @param max_mgmt_ie
* @param print flag
* @return UAP_SUCCESS/UAP_FAILURE
*/
static int
get_max_mgmt_ie(int *max_mgmt_ie, int flag)
{
apcmdbuf_sys_configure *cmd_buf = NULL;
tlvbuf_max_mgmt_ie *tlv = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len = 0, i = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
*max_mgmt_ie = 0;
/* Initialize the command length */
cmd_len = sizeof(apcmdbuf_sys_configure) + sizeof(tlvbuf_max_mgmt_ie);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
/* Locate headers */
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_max_mgmt_ie *)(buffer + sizeof(apcmdbuf_sys_configure));
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
tlv->tag = MRVL_MAX_MGMT_IE_TLV_ID;
tlv->length = 0;
cmd_buf->action = ACTION_GET;
endian_convert_tlv_header_out(tlv);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
endian_convert_tlv_header_in(tlv);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if ((cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) ||
(tlv->tag != MRVL_MAX_MGMT_IE_TLV_ID)) {
printf("ERR:Corrupted response! cmd_code=%x, Tlv->tag=%x\n", cmd_buf->cmd_code, tlv->tag);
free(buffer);
return UAP_FAILURE;
}
/* Print response */
if (cmd_buf->result == CMD_SUCCESS) {
tlv->count = uap_le16_to_cpu(tlv->count);
for (i = 0; i < tlv->count; i++) {
tlv->info[i].buf_size =
uap_le16_to_cpu(tlv->info[i].buf_size);
tlv->info[i].buf_count =
uap_le16_to_cpu(tlv->info[i].buf_count);
*max_mgmt_ie += tlv->info[i].buf_count;
if (flag) {
printf("buf%d_size = %d\n", i,
tlv->info[i].buf_size);
printf("number of buffers = %d\n",
tlv->info[i].buf_count);
printf("\n");
}
}
} else {
printf("ERR:Could not get max_mgmt_ie_index!\n");
ret = UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
}
if (buffer)
free(buffer);
return UAP_SUCCESS;
}
/**
* @brief Creates a sys_cfg request for custom IE settings
* and sends to the driver
*
* Usage: "sys_cfg_custom_ie [INDEX] [MASK] [IEBuffer]"
*
* Options: INDEX : 0 - Get/Set IE index 0 setting
* 1 - Get/Set IE index 1 setting
* 2 - Get/Set IE index 2 setting
* 3 - Get/Set IE index 3 setting
* .
* .
* .
* MASK : Management subtype mask value
* IEBuffer: IE Buffer in hex
* empty - Get all IE settings
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_sys_cfg_custom_ie(int argc, char *argv[])
{
tlvbuf_custom_ie *tlv = NULL;
tlvbuf_max_mgmt_ie *max_mgmt_ie_tlv = NULL;
custom_ie *ie_ptr = NULL;
t_u8 *buffer = NULL;
t_u16 buf_len = 0;
t_u16 mgmt_subtype_mask = 0;
int ie_buf_len = 0, ie_len = 0, i = 0, max_mgmt_ie = 0, print_flag = 0;
struct ifreq ifr;
t_s32 sockfd;
if (argc == 1 && max_mgmt_ie_print == 0) {
/* Print buffer sizes only if (argc == 1) i.e. get all indices one by one
* && (max_mgmt_ie_print == 0) i.e. max mgmt IE is not printed via sys_config cmd */
print_flag = 1;
}
/* Reset the max_mgmt_ie_print for successive cmds */
max_mgmt_ie_print = 0;
if (!get_max_mgmt_ie(&max_mgmt_ie, print_flag)) {
printf("ERR:couldn't get max_mgmt_ie!\n");
return UAP_FAILURE;
}
if (max_mgmt_ie == 0) {
max_mgmt_ie = MAX_MGMT_IE_INDEX;
#if DEBUG
uap_printf(MSG_DEBUG,
"WARN: max_mgmt_ie=0, defaulting to MAX_MGMT_IE_INDEX\n");
#endif
}
/* Check arguments */
if (argc > 4) {
printf("ERR:Too many arguments.\n");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
/* Error checks and initialize the command length */
if (argc >= 2) {
if (((IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE) &&
(atoi(argv[1]) != -1)) || (atoi(argv[1]) < -1)) {
printf("ERR:Illegal index %s\n", argv[1]);
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
}
switch (argc) {
case 1:
buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
break;
case 2:
if ((atoi(argv[1]) < 0) || (atoi(argv[1]) >= max_mgmt_ie)) {
printf("ERR:Illegal index %s. Must be either greater than or equal to 0 and less than %d for Get Operation \n", argv[1], max_mgmt_ie);
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
break;
case 3:
if (UAP_FAILURE == ishexstring(argv[2]) ||
A2HEXDECIMAL(argv[2]) != 0) {
printf("ERR: Mask value should be 0 to clear IEBuffers.\n");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
if (atoi(argv[1]) == -1) {
printf("ERR: Buffer should be provided for automatic deletion.\n");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
buf_len = sizeof(tlvbuf_custom_ie) + sizeof(custom_ie);
break;
case 4:
/* This is to check negative numbers and special symbols */
if (UAP_FAILURE == IS_HEX_OR_DIGIT(argv[2])) {
printf("ERR:Mask value must be 0 or hex digits\n");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
/* If above check is passed and mask is not hex, then it must be 0 */
if ((ISDIGIT(argv[2]) == UAP_SUCCESS) && atoi(argv[2])) {
printf("ERR:Mask value must be 0 or hex digits\n ");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
if (UAP_FAILURE == ishexstring(argv[3])) {
printf("ERR:Only hex digits are allowed\n");
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
ie_buf_len = strlen(argv[3]);
if (!strncasecmp("0x", argv[3], 2)) {
ie_len = (ie_buf_len - 2 + 1) / 2;
argv[3] += 2;
} else
ie_len = (ie_buf_len + 1) / 2;
if (ie_len > MAX_IE_BUFFER_LEN) {
printf("ERR:Incorrect IE length %d\n", ie_buf_len);
print_sys_cfg_custom_ie_usage();
return UAP_FAILURE;
}
mgmt_subtype_mask = (t_u16)A2HEXDECIMAL(argv[2]);
buf_len = sizeof(tlvbuf_custom_ie) + sizeof(custom_ie) + ie_len;
break;
}
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(buf_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(buffer, 0, buf_len);
tlv = (tlvbuf_custom_ie *)buffer;
tlv->tag = MRVL_MGMT_IE_LIST_TLV_ID;
if (argc == 1 || argc == 2) {
if (argc == 1)
tlv->length = 0;
else {
tlv->length = sizeof(t_u16);
ie_ptr = (custom_ie *)(tlv->ie_data);
ie_ptr->ie_index = (t_u16)(atoi(argv[1]));
}
} else {
/* Locate headers */
ie_ptr = (custom_ie *)(tlv->ie_data);
/* Set TLV fields */
tlv->length = sizeof(custom_ie) + ie_len;
ie_ptr->ie_index = atoi(argv[1]);
ie_ptr->mgmt_subtype_mask = mgmt_subtype_mask;
ie_ptr->ie_length = ie_len;
if (argc == 4)
string2raw(argv[3], ie_ptr->ie_buffer);
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
if (buffer)
free(buffer);
return UAP_FAILURE;
}
if (argc != 1) {
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)buffer;
/* Perform ioctl */
if (ioctl(sockfd, UAP_CUSTOM_IE, &ifr)) {
if (errno < 0) {
perror("ioctl[UAP_CUSTOM_IE]");
printf("ERR:Command sending failed!\n");
} else {
printf("custom IE configuration failed!\n");
}
close(sockfd);
if (buffer)
free(buffer);
return UAP_FAILURE;
}
/* Print response */
if (argc > 2) {
printf("custom IE setting successful\n");
} else {
printf("Querying custom IE successful\n");
tlv = (tlvbuf_custom_ie *)buffer;
ie_len = tlv->length;
ie_ptr = (custom_ie *)(tlv->ie_data);
if (tlv->tag == MRVL_MGMT_IE_LIST_TLV_ID) {
while ((unsigned int)ie_len >=
sizeof(custom_ie)) {
printf("Index [%d]\n",
ie_ptr->ie_index);
if (ie_ptr->ie_length)
printf("Management Subtype Mask = 0x%02x\n", ie_ptr->mgmt_subtype_mask == 0 ? UAP_CUSTOM_IE_AUTO_MASK : ie_ptr->mgmt_subtype_mask);
else
printf("Management Subtype Mask = 0x%02x\n", ie_ptr->mgmt_subtype_mask);
hexdump_data("IE Buffer",
(void *)ie_ptr->ie_buffer,
(ie_ptr->ie_length), ' ');
ie_len -=
sizeof(custom_ie) +
ie_ptr->ie_length;
ie_ptr = (custom_ie *)((t_u8 *)ie_ptr +
sizeof(custom_ie)
+
ie_ptr->
ie_length);
}
}
max_mgmt_ie_tlv =
(tlvbuf_max_mgmt_ie *)(buffer +
sizeof(tlvbuf_custom_ie)
+ tlv->length);
if (max_mgmt_ie_tlv) {
if (max_mgmt_ie_tlv->tag ==
MRVL_MAX_MGMT_IE_TLV_ID) {
for (i = 0; i < max_mgmt_ie_tlv->count;
i++) {
printf("buf%d_size = %d\n", i,
max_mgmt_ie_tlv->info[i].
buf_size);
printf("number of buffers = %d\n", max_mgmt_ie_tlv->info[i].buf_count);
printf("\n");
}
}
}
}
}
/* Special handling for all indices: Get all IEs one-by-one */
if (argc == 1) {
for (i = 0; i < max_mgmt_ie; i++) {
tlv->length = sizeof(t_u16);
ie_ptr = (custom_ie *)(tlv->ie_data);
ie_ptr->ie_index = (t_u16)(i);
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)buffer;
/* Perform ioctl */
if (ioctl(sockfd, UAP_CUSTOM_IE, &ifr)) {
if (errno < 0) {
perror("ioctl[UAP_CUSTOM_IE]");
printf("ERR:Command sending failed!\n");
} else {
printf("custom IE configuration failed!\n");
}
close(sockfd);
if (buffer)
free(buffer);
return UAP_FAILURE;
}
/* Print response */
tlv = (tlvbuf_custom_ie *)buffer;
ie_len = tlv->length;
ie_ptr = (custom_ie *)(tlv->ie_data);
if (tlv->tag == MRVL_MGMT_IE_LIST_TLV_ID) {
while ((unsigned int)ie_len >=
sizeof(custom_ie)) {
printf("Index [%d]\n",
ie_ptr->ie_index);
if (ie_ptr->ie_length)
printf("Management Subtype Mask = 0x%02x\n", ie_ptr->mgmt_subtype_mask == 0 ? UAP_CUSTOM_IE_AUTO_MASK : ie_ptr->mgmt_subtype_mask);
else
printf("Management Subtype Mask = 0x%02x\n", ie_ptr->mgmt_subtype_mask);
hexdump_data("IE Buffer",
(void *)ie_ptr->ie_buffer,
(ie_ptr->ie_length), ' ');
ie_len -=
sizeof(custom_ie) +
ie_ptr->ie_length;
ie_ptr = (custom_ie *)((t_u8 *)ie_ptr +
sizeof(custom_ie)
+
ie_ptr->
ie_length);
}
}
}
printf("Querying custom IE successful\n");
}
if (buffer)
free(buffer);
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the dfstesting command
*
* $return N/A
*/
void
print_dfstesting_usage(void)
{
printf("\nUsage : dfstesting [USER_CAC_PD USER_NOP_PD NO_CHAN_CHANGE FIXED_CHAN_NUM]\n");
printf("\n empty - Get all dfstesting settings\n");
printf("\n USER_CAC_PD: user configured Channel Availability Check period");
printf("\n 0 - disable, use default (60000)");
printf("\n 1-65535 - CAC period in msec");
printf("\n USER_NOP_PD: user configured Non-Occupancy Period");
printf("\n 0 - disable, use default (1800)");
printf("\n 1-65535 - NOP period in sec");
printf("\n NO_CHAN_CHANGE: user setting, don't change channel on radar");
printf("\n 0 - disable, default behavior");
printf("\n non-zero - enable, overrides below setting");
printf("\n FIXED_CHAN_NUM: user fixed channel to change to on radar");
printf("\n 0 - disable, use random channel [default]");
printf("\n 1-255 - set fixed channel (not checked for validity)\n");
return;
}
/**
* @brief user configuration of dfs testing settings
*
* Usage: "dfstesting [USER_CAC_PD USER_NOP_PD NO_CHAN_CHANGE FIXED_CHAN_NUM]"
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_dfstesting(int argc, char *argv[])
{
int opt;
struct ifreq ifr;
t_s32 sockfd;
t_u32 val;
dfs_testing_para dfs_test;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_dfstesting_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
memset(&dfs_test, 0x00, sizeof(dfs_test));
/* Check arguments */
if (argc == 0) {
dfs_test.action = ACTION_GET;
} else if (argc == 4) {
if ((IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) ||
(IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE) ||
(IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE) ||
(IS_HEX_OR_DIGIT(argv[3]) == UAP_FAILURE)) {
printf("ERR: Only Number values are allowed\n");
print_dfstesting_usage();
return UAP_FAILURE;
}
val = A2HEXDECIMAL(argv[0]);
if (val > 0xfffff) {
printf("ERR: invalid user_cac_pd value!\n");
return UAP_FAILURE;
}
dfs_test.usr_cac_period = (t_u32)val;
val = A2HEXDECIMAL(argv[1]);
if (val > 0xffff) {
printf("ERR: invalid user_nop_pd value!\n");
return UAP_FAILURE;
}
dfs_test.usr_nop_period = (t_u16)val;
val = A2HEXDECIMAL(argv[2]);
dfs_test.no_chan_change = (t_u8)(val ? 1 : 0);
val = A2HEXDECIMAL(argv[3]);
if (val > 0xff) {
printf("ERR: invalid fixed_chan_num value!\n");
return UAP_FAILURE;
}
dfs_test.fixed_new_chan = (t_u8)val;
dfs_test.action = ACTION_SET;
} else {
printf("ERR: invalid number of arguments! Must be 0 or 4.\n");
print_dfstesting_usage();
return UAP_FAILURE;
}
dfs_test.subcmd = UAP_DFS_TESTING;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&dfs_test;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: UAP_DFS_TESTING is not supported by %s\n",
dev_name);
close(sockfd);
return UAP_FAILURE;
}
if (argc)
printf("DFS testing setting successful!\n");
else
printf("DFS testing settings:\n"
" user_cac_period = %d msec\n"
" user_nop_period = %d sec\n"
" no_channel_change = %d\n"
" fixed_channel_num = %d\n",
dfs_test.usr_cac_period, dfs_test.usr_nop_period,
dfs_test.no_chan_change, dfs_test.fixed_new_chan);
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the cscount_cfg
* command
*
* $return N/A
*/
void
print_cscount_cfg_usage(void)
{
printf("\nUsage : cscount [<n>]");
printf("\n Where <n> ");
printf("\n 5-20: No of beacons with Channel Switch Count IE\n");
return;
}
/**
* @brief Set/get cs_count configuration
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_cscount_cfg(int argc, char *argv[])
{
int opt;
cscount_cfg_t cscount_cfg;
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_cscount_cfg_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
memset(&cscount_cfg, 0, sizeof(cscount_cfg));
if (argc == 0) {
cscount_cfg.action = ACTION_GET;
} else if (argc == 1) {
if ((t_u32)A2HEXDECIMAL(argv[0]) < 5
&& (t_u32)A2HEXDECIMAL(argv[0]) > 20) {
printf("ERR:Invalid Channel switch count value\n");
return UAP_FAILURE;
}
cscount_cfg.action = ACTION_SET;
cscount_cfg.cs_count = (t_u32)A2HEXDECIMAL(argv[0]);
} else {
print_cscount_cfg_usage();
return UAP_FAILURE;
}
cscount_cfg.subcmd = UAP_CHAN_SWITCH_COUNT_CFG;
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)&cscount_cfg;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: Channel switch count configuration failed\n");
close(sockfd);
return UAP_FAILURE;
}
/* Handle response */
if (cscount_cfg.action == ACTION_GET) {
printf("Channel Switch count = %d\n", cscount_cfg.cs_count);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the mgmtframectrl command
*
* $return N/A
*/
void
print_mgmtframectrl_usage(void)
{
printf("\nUsage : mgmtframectrl [MASK]\n");
printf(" empty - Get management frame control mask\n");
printf(" MASK - Set management frame control mask\n");
}
/**
* @brief Creates management frame control request and send to driver
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
apcmd_mgmt_frame_control(int argc, char *argv[])
{
int opt;
mgmt_frame_ctrl param; /* Action =0, Mask =0 */
struct ifreq ifr;
t_s32 sockfd;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_mgmtframectrl_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if (argc > 1) {
printf("ERR:wrong arguments.\n");
print_mgmtframectrl_usage();
return UAP_FAILURE;
}
if ((argc) && (IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE)) {
printf("ERR: Invalid argument %s\n", argv[0]);
print_mgmtframectrl_usage();
return UAP_FAILURE;
}
memset(&param, 0, sizeof(mgmt_frame_ctrl));
param.subcmd = UAP_MGMT_FRAME_CONTROL;
if (argc) {
param.action = ACTION_SET;
param.mask = (t_u16)A2HEXDECIMAL(argv[0]);
} else {
param.action = ACTION_GET;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, strlen(dev_name));
ifr.ifr_ifru.ifru_data = (void *)&param;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR:UAP_IOCTL_CMD failed\n");
close(sockfd);
return UAP_FAILURE;
}
if (!argc) {
printf("Management Frame control mask = 0x%02x\n",
(int)param.mask);
}
/* Close socket */
close(sockfd);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for the sys_cfg_pmf command
* command
*
* $return N/A
*/
void
print_sys_cfg_pmf(void)
{
printf("\nUsage : uaputl.exe sys_cfg_pmf [MFPC] [MFPR]\n");
printf("\nSet/Get PMF capabilities");
printf("\n empty - Get PMF capabilites\n");
printf("\n MFPC: Management frames protection capable");
printf("\n 0 - Not capable");
printf("\n 1 - capable");
printf("\n MFPR: Management frames protection required");
printf("\n don't care if MFPC is set to 0");
printf("\n 0 - Not required");
printf("\n 1 - required\n");
return;
}
int
apcmd_sys_cfg_pmf(int argc, char *argv[])
{
int opt;
apcmdbuf_pmf_params *cmd_buf = NULL;
t_u8 *buf = NULL;
t_u16 cmd_len = 0;
t_u16 buf_len = MRVDRV_SIZE_OF_CMD_BUFFER;
int ret = UAP_SUCCESS;
t_u8 mfpc = 0;
t_u8 mfpr = 0;
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_sys_cfg_pmf();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
/* Check arguments */
if ((argc > 2)) {
printf("ERR:wrong arguments.\n");
print_sys_cfg_pmf();
return UAP_FAILURE;
}
if (argc > 0)
mfpc = atoi(argv[0]);
if (mfpc && (argc == 1)) {
printf("ERR:wrong arguments.\n");
print_sys_cfg_pmf();
return UAP_FAILURE;
}
if (mfpc && (argc == 2))
mfpr = atoi(argv[1]);
/* Alloc buf for command */
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer from command!\n");
return UAP_FAILURE;
}
memset(buf, 0, buf_len);
/* Locate headers */
cmd_len = sizeof(apcmdbuf_pmf_params);
cmd_buf = (apcmdbuf_pmf_params *) buf;
/* Fill the command buffer */
cmd_buf->size = cmd_len - BUF_HEADER_SIZE;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->cmd_code = HostCmd_CMD_PMF_PARAMS;
if (argc == 0)
cmd_buf->action = ACTION_GET;
else
cmd_buf->action = ACTION_SET;
cmd_buf->action = uap_cpu_to_le16(cmd_buf->action);
cmd_buf->params.mfpc = mfpc;
cmd_buf->params.mfpr = mfpr;
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, buf_len);
/* Process response */
if (ret == UAP_SUCCESS) {
if (cmd_buf->result == CMD_SUCCESS) {
printf("Successfully executed the command\n");
printf("mfpc: %d, mfpr: %d\n",
cmd_buf->params.mfpc, cmd_buf->params.mfpr);
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
} else {
printf("ERR:Command sending failed!\n");
free(buf);
return UAP_FAILURE;
}
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Show usage information for uap operation control command
*
* $return N/A
*/
void
print_uap_oper_ctrl_usage(void)
{
printf("\nUsage : uap_oper_ctrl <control> <chanopt> <bandcfg> <channel> ");
printf("\n set/get uap operation when in-STA disconnected from ext-AP if multi channel is disabled");
printf("\n control: 0: default, do nothing");
printf("\n 2: uap stops and restart automatically");
printf("\n chanopt : specify which channel should be used when uap restarts automatically");
printf("\n 1: uap restarts on default 2.4G/channel 6");
printf("\n 2: uap restart on band/channel configured by driver previously");
printf("\n 3: uap restart on band/channel configured by parameter bandcfg/channel");
printf("\n bandcfg : This parameter specifies the bandwidth (BW)");
printf("\n 0: 20Mhz");
printf("\n 2: 40Mhz");
printf("\n 3: 80Mhz");
printf("\n channel : This parameter specifies the channel will be used when chanopt is 3.");
return;
}
/**
* @brief Set/Get uap operation when in-STA disconnected from ext-AP
* @param argc Number of arguments
* @param argv A pointer to arguments array
* @return MLAN_STATUS_SUCCESS--success, otherwise--fail
*/
int
apcmd_uap_oper_ctrl(int argc, char *argv[])
{
int opt;
uap_operation_ctrl param;
struct eth_priv_uap_oper_ctrl *uap_oper = NULL;
struct ifreq ifr;
t_s32 sockfd;
t_u8 *respbuf = NULL;
memset(&param, 0, sizeof(param));
while ((opt = getopt_long(argc, argv, "+", cmd_options, NULL)) != -1) {
switch (opt) {
default:
print_uap_oper_ctrl_usage();
return UAP_SUCCESS;
}
}
argc -= optind;
argv += optind;
respbuf = (t_u8 *)malloc(MRVDRV_SIZE_OF_CMD_BUFFER);
if (!respbuf) {
printf("ERR:Cannot allocate buffer for command!\n");
return UAP_FAILURE;
}
memset(respbuf, 0, MRVDRV_SIZE_OF_CMD_BUFFER);
/* Check arguments */
if (argc > 4) {
printf("ERR: Invalid number of arguments.\n");
print_uap_oper_ctrl_usage();
free(respbuf);
return UAP_FAILURE;
}
if (argc > 0) {
param.uap_oper.ctrl = (t_u16)A2HEXDECIMAL(argv[0]);
if (param.uap_oper.ctrl == 2)
param.uap_oper.chan_opt = (t_u16)A2HEXDECIMAL(argv[1]);
if (argc == 4 && param.uap_oper.chan_opt == 3) {
param.uap_oper.bandcfg = (t_u8)A2HEXDECIMAL(argv[2]);
param.uap_oper.channel = (t_u8)A2HEXDECIMAL(argv[3]);
}
param.action = ACTION_SET;
} else {
param.action = ACTION_GET;
}
param.subcmd = UAP_OPERATION_CTRL;
memcpy(respbuf, &param, sizeof(uap_operation_ctrl));
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
free(respbuf);
return UAP_FAILURE;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)respbuf;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
perror("");
printf("ERR: uap operation control set/get failed\n");
close(sockfd);
free(respbuf);
return UAP_FAILURE;
}
/* Handle response */
if (param.action == ACTION_GET) {
/* Process result */
uap_oper =
(struct eth_priv_uap_oper_ctrl *)(respbuf +
2 * sizeof(t_u32));
printf(" uap operation control %x\n", uap_oper->ctrl);
printf(" uap channel operation %x\n", uap_oper->chan_opt);
if (uap_oper->chan_opt == 3) {
printf(" uap bandwidth %s\n",
uap_oper->
bandcfg ? ((uap_oper->bandcfg == 2) ? "40Mhz" :
"80Mhz") : "20Mhz");
printf(" uap channel %d\n", uap_oper->channel);
}
} else
printf("uap operation control set success!\n");
/* Close socket */
close(sockfd);
if (respbuf)
free(respbuf);
return UAP_SUCCESS;
}
/** Structure of command table*/
typedef struct {
/** Command name */
char *cmd;
/** Command function pointer */
int (*func) (int argc, char *argv[]);
/** Command usuage */
char *help;
} command_table;
/** AP command table */
static command_table ap_command[] = {
{"sys_config", apcmd_sys_config, "\tSet/get uAP's profile"},
{"sys_info", apcmd_sys_info, "\tDisplay system info"},
{"sys_reset", apcmd_sys_reset, "\tReset uAP"},
{"bss_start", apcmd_bss_start, "\tStart the BSS"},
{"bss_stop", apcmd_bss_stop, "\tStop the BSS"},
{"skip_cac", apcmd_skip_cac, "\tSkip the CAC"},
{"sta_deauth", apcmd_sta_deauth, "\tDeauth client"},
{"sta_list", apcmd_sta_list, "\tDisplay list of clients"},
{"sys_cfg_ap_mac_address", apcmd_sys_cfg_ap_mac_address,
"Set/get uAP mac address"},
{"sys_cfg_ssid", apcmd_sys_cfg_ssid, "\tSet/get uAP ssid"},
{"sys_cfg_beacon_period", apcmd_sys_cfg_beacon_period,
"Set/get uAP beacon period"},
{"sys_cfg_dtim_period", apcmd_sys_cfg_dtim_period,
"Set/get uAP dtim period"},
{"sys_cfg_bss_status", apcmd_sys_cfg_bss_status, "Get BSS status"},
{"sys_cfg_channel", apcmd_sys_cfg_channel,
"\tSet/get uAP radio channel"},
{"sys_cfg_channel_ext", apcmd_sys_cfg_channel_ext,
"\tSet/get uAP radio channel, band and mode"},
{"sys_cfg_scan_channels", apcmd_sys_cfg_scan_channels,
"Set/get uAP radio channel list"},
{"sys_cfg_rates", apcmd_sys_cfg_rates, "\tSet/get uAP rates"},
{"sys_cfg_rates_ext", apcmd_sys_cfg_rates_ext, "\tSet/get uAP rates"},
{"sys_cfg_tx_power", apcmd_sys_cfg_tx_power, "Set/get uAP tx power"},
{"sys_cfg_bcast_ssid_ctl", apcmd_sys_cfg_bcast_ssid_ctl,
"Set/get uAP broadcast ssid"},
{"sys_cfg_preamble_ctl", apcmd_sys_cfg_preamble_ctl,
"Get uAP preamble"},
{"antcfg", apcmd_antcfg, "Set/get uAP tx/rx antenna"},
{"htstreamcfg", apcmd_htstreamcfg,
"Set/get uAP HT stream configurations"},
{"sys_cfg_rts_threshold", apcmd_sys_cfg_rts_threshold,
"Set/get uAP rts threshold"},
{"sys_cfg_frag_threshold", apcmd_sys_cfg_frag_threshold,
"Set/get uAP frag threshold"},
{"radioctrl", apcmd_radio_ctl, "Set/get uAP radio on/off"},
{"sys_cfg_tx_beacon_rate", apcmd_sys_cfg_tx_beacon_rate,
"Set/get uAP tx beacon rate"},
{"txratecfg", apcmd_tx_rate_cfg, "Set/get trasnmit data rate"},
{"sys_cfg_mcbc_data_rate", apcmd_sys_cfg_mcbc_data_rate,
"Set/get uAP MCBC rate"},
{"sys_cfg_rsn_replay_prot", apcmd_sys_cfg_rsn_replay_prot,
"Set/get RSN replay protection"},
{"sys_cfg_pkt_fwd_ctl", apcmd_sys_cfg_pkt_fwd_ctl,
"Set/get uAP packet forwarding"},
{"sys_cfg_sta_ageout_timer", apcmd_sys_cfg_sta_ageout_timer,
"Set/get station ageout timer"},
{"sys_cfg_ps_sta_ageout_timer", apcmd_sys_cfg_ps_sta_ageout_timer,
"Set/get PS station ageout timer"},
{"sys_cfg_auth", apcmd_sys_cfg_auth,
"\tSet/get uAP authentication mode"},
{"sys_cfg_protocol", apcmd_sys_cfg_protocol,
"Set/get uAP security protocol"},
{"sys_cfg_wep_key", apcmd_sys_cfg_wep_key, "\tSet/get uAP wep key"},
{"sys_cfg_cipher", apcmd_sys_cfg_cipher,
"\tSet/get uAP WPA/WPA2 cipher"},
{"sys_cfg_pwk_cipher", apcmd_sys_cfg_pwk_cipher,
"\tSet/get uAP WPA/WPA2 pairwise cipher"},
{"sys_cfg_gwk_cipher", apcmd_sys_cfg_gwk_cipher,
"\tSet/get uAP WPA/WPA2 group cipher"},
{"sys_cfg_wpa_passphrase", apcmd_sys_cfg_wpa_passphrase,
"Set/get uAP WPA or WPA2 passphrase"},
{"sys_cfg_wpa3_sae_password", apcmd_sys_cfg_wpa3_sae_password,
"Set/get uAP WPA3 SAE password"},
{"sys_cfg_group_rekey_timer", apcmd_sys_cfg_group_rekey_timer,
"Set/get uAP group re-key time"},
{"sys_cfg_max_sta_num", apcmd_sys_cfg_max_sta_num,
"Set/get uAP max station number"},
{"sys_cfg_retry_limit", apcmd_sys_cfg_retry_limit,
"Set/get uAP retry limit number"},
{"sys_cfg_sticky_tim_config", apcmd_sys_cfg_sticky_tim_config,
"Set/get uAP sticky TIM configuration"},
{"sys_cfg_sticky_tim_sta_mac_addr",
apcmd_sys_cfg_sticky_tim_sta_mac_addr,
"Set/get uAP sticky TIM sta MAC address"},
{"sys_cfg_eapol_pwk_hsk", apcmd_sys_cfg_eapol_pwk_hsk,
"Set/getuAP pairwise Handshake timeout value and retries"},
{"sys_cfg_eapol_gwk_hsk", apcmd_sys_cfg_eapol_gwk_hsk,
"Set/getuAP groupwise Handshake timeout value and retries"},
{"sys_cfg_custom_ie", apcmd_sys_cfg_custom_ie,
"\tSet/get custom IE configuration"},
{"sta_filter_table", apcmd_sta_filter_table, "Set/get uAP mac filter"},
{"regrdwr", apcmd_regrdwr, "\t\tRead/Write register command"},
{"memaccess", apcmd_memaccess,
"\tRead/Write to a memory address command"},
{"rdeeprom", apcmd_read_eeprom, "\tRead EEPROM "},
{"cfg_data", apcmd_cfg_data,
"\tGet/Set configuration file from/to firmware"},
{"sys_cfg_80211d", apcmd_cfg_80211d, "\tSet/Get 802.11D info"},
{"uap_stats", apcmd_uap_stats, "\tGet uAP stats"},
{"pscfg", apcmd_pscfg, "\t\tSet/get uAP power mode"},
{"bss_config", apcmd_bss_config, "\tSet/get BSS configuration"},
{"sta_deauth_ext", apcmd_sta_deauth_ext, "\tDeauth client"},
{"mic_err", apcmd_mic_err, "\t\tReport station mic error"},
{"key_material", apcmd_set_key, "\tSet key"},
{"coex_config", apcmd_coex_config,
"\tSet/get uAP BT coex configuration"},
{"hscfg", apcmd_hscfg, "\t\tSet/get uAP host sleep parameters."},
{"hssetpara", apcmd_hssetpara,
"\t\tSet/get uAP host sleep parameters."},
{"addbapara", apcmd_addbapara, "\tSet/get uAP ADDBA parameters."},
{"aggrpriotbl", apcmd_aggrpriotbl,
"\tSet/get uAP priority table for AMPDU/AMSDU."},
{"addbareject", apcmd_addbareject, "\tSet/get uAP addbareject table."},
{"sys_cfg_11n", apcmd_sys_cfg_11n, "\tSet/get uAP 802.11n parameters."},
#ifdef RX_PACKET_COALESCE
{"rxpktcoal_cfg", apcmd_rx_pkt_coalesce,
"\tSet/get RX Packet coalesing paramterts."},
#endif
{"httxbfcfg", apcmd_sys_cfg_tx_bf, "\tSet/get uAP TX BF parameters."},
{"httxcfg", apcmd_sys_cfg_ht_tx, "\t\tSet/get uAP HT Tx parameters."},
{"vhtcfg", apcmd_sys_cfg_vht, "\t\tSet/get uAP VHT parameters."},
{"sys_cfg_wmm", apcmd_sys_cfg_wmm,
"\tSet/get uAP beacon wmm parameters."},
{"sys_cfg_ap_wmm", apcmd_sys_cfg_ap_wmm,
"\tSet/get uAP hardware wmm parameters."},
{"deepsleep", apcmd_deepsleep, "\tSet/get deepsleep mode."},
{"hostcmd", apcmd_hostcmd, "\t\tSet/get hostcmd"},
{"tx_data_pause", apcmd_txdatapause,
"\tSet/get Tx data pause settings."},
#ifdef SDIO
{"sdcmd52rw", apcmd_cmd52_readwrite,
"\tRead or write using sdio command 52."},
#endif
{"sys_cfg_2040_coex", apcmd_sys_cfg_2040_coex,
"\tSet/get 20/40 coex settings."},
{"dfstesting", apcmd_dfstesting, "\tConfigure DFS Testing settings."},
{"cscount", apcmd_cscount_cfg, "\tConfigure DFS Channel Switch Count."},
{"mgmtframectrl", apcmd_mgmt_frame_control,
"\tSpecifies mask indicating management frames to be sent from host."},
{"sys_cfg_restrict_client_mode", apcmd_sys_cfg_restrict_client_mode,
"\tSet/get the mode in which client stations can connect to the uAP."},
{"sys_cfg_pmf", apcmd_sys_cfg_pmf, "\tSet/get PMF capabilities."},
{"uap_oper_ctrl", apcmd_uap_oper_ctrl,
"\tSet/get uap operation control value."},
{"band_steering_cfg", apcmd_band_steering,
"\tConfigure Band Steering."},
{NULL, NULL, 0}
};
/**
* @brief Prints usage information of uaputl
*
* @return N/A
*/
static void
print_tool_usage(void)
{
int i;
printf("uaputl.exe - uAP utility ver %s\n", UAP_VERSION);
printf("Usage:\n"
"\tuaputl.exe [options] <command> [command parameters]\n");
printf("Options:\n"
"\t--help\tDisplay help\n"
"\t-v\tDisplay version\n"
"\t-i <interface>\n" "\t-d <debug_level=0|1|2>\n");
printf("Commands:\n");
for (i = 0; ap_command[i].cmd; i++)
printf("\t%-4s\t\t%s\n", ap_command[i].cmd, ap_command[i].help);
printf("\n"
"For more information on the usage of each command use:\n"
"\tuaputl.exe <command> --help\n");
}
/****************************************************************************
Global functions
****************************************************************************/
/** Option parameter*/
static struct option ap_options[] = {
{"help", 0, NULL, 'h'},
{"interface", 1, NULL, 'i'},
{"debug", 1, NULL, 'd'},
{"version", 0, NULL, 'v'},
{NULL, 0, NULL, '\0'}
};
/**
* @brief Checks if given channel in 'a' band is valid or not.
*
* @param channel Channel number
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_valid_a_band_channel(int channel)
{
int ret = UAP_SUCCESS;
switch (channel) {
case 16:
case 34:
case 36:
case 38:
case 40:
case 42:
case 44:
case 46:
case 48:
case 52:
case 56:
case 60:
case 64:
case 100:
case 104:
case 108:
case 112:
case 116:
case 120:
case 124:
case 128:
case 132:
case 136:
case 140:
case 144:
case 149:
case 153:
case 157:
case 161:
case 165:
break;
default:
ret = UAP_FAILURE;
break;
}
return ret;
}
/**
* @brief Checks if secondary channel can be set above given primary channel in 'a' band or not.
*
* @param channel Channel number
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_valid_a_band_channel_above(int channel)
{
int ret = UAP_SUCCESS;
switch (channel) {
case 36:
case 44:
case 52:
case 60:
case 100:
case 108:
case 116:
case 124:
case 132:
case 140:
case 149:
case 157:
break;
default:
ret = UAP_FAILURE;
break;
}
return ret;
}
/**
* @brief Checks if secondary channel can be set below given primary channel in 'a' band or not.
*
* @param channel Channel number
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_valid_a_band_channel_below(int channel)
{
int ret = UAP_SUCCESS;
switch (channel) {
case 40:
case 48:
case 56:
case 64:
case 104:
case 112:
case 120:
case 128:
case 136:
case 153:
case 161:
break;
default:
ret = UAP_FAILURE;
break;
}
return ret;
}
/**
* @brief Checkes a particular input for validatation.
*
* @param cmd Type of input
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_input_valid(valid_inputs cmd, int argc, char *argv[])
{
int i;
int chan_number = 0;
int band = 0;
int ch;
int ret = UAP_SUCCESS;
if (argc == 0)
return UAP_FAILURE;
switch (cmd) {
case RDEEPROM:
if (argc != 2) {
printf(" ERR: Argument count mismatch\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (ISDIGIT(argv[1]) == 0)
|| (A2HEXDECIMAL(argv[0]) & 0x03) ||
((int)(A2HEXDECIMAL(argv[0])) < 0) ||
(A2HEXDECIMAL(argv[1]) & 0x03) ||
(A2HEXDECIMAL(argv[1]) < 4) ||
(A2HEXDECIMAL(argv[1]) > 20)) {
printf(" ERR: Invalid inputs for Read EEPROM\n");
ret = UAP_FAILURE;
}
}
break;
case SCANCHANNELS:
if (argc > MAX_CHANNELS) {
printf("ERR: Invalid List of Channels\n");
ret = UAP_FAILURE;
} else {
for (i = 0; i < argc; i++) {
chan_number = -1;
band = -1;
sscanf(argv[i], "%d.%d", &chan_number, &band);
if ((chan_number == -1) || (chan_number < 1) ||
(chan_number > MAX_CHANNELS)) {
printf("ERR: Channel must be in the range of 1 to %d\n", MAX_CHANNELS);
ret = UAP_FAILURE;
break;
}
if ((chan_number > MAX_CHANNELS_BG) &&
!(is_valid_a_band_channel(chan_number))) {
printf("ERR: Invalid Channel in 'a' band!\n");
ret = UAP_FAILURE;
break;
}
if ((band < -1) || (band > 1)) {
printf("ERR:Band must be either 0 or 1\n");
ret = UAP_FAILURE;
break;
} else {
if (((chan_number < MAX_CHANNELS_BG) &&
(chan_number != 8) &&
(chan_number != 12) && (band == 1))
|| ((chan_number > MAX_CHANNELS_BG)
&& (band == 0))) {
printf("ERR:Invalid band for given channel\n");
ret = UAP_FAILURE;
break;
}
}
}
if ((ret != UAP_FAILURE) &&
(has_dup_channel(argc, argv) != UAP_SUCCESS)) {
printf("ERR: Duplicate channel values entered\n");
ret = UAP_FAILURE;
}
if ((ret != UAP_FAILURE) &&
(has_diff_band(argc, argv) != UAP_SUCCESS)) {
printf("ERR: Scan channel list should contain channels from only one band\n");
ret = UAP_FAILURE;
}
}
break;
case TXPOWER:
if ((argc > 1) || (ISDIGIT(argv[0]) == 0)) {
printf("ERR:Invalid Transmit power\n");
ret = UAP_FAILURE;
} else {
if ((atoi(argv[0]) < MIN_TX_POWER) ||
(atoi(argv[0]) > MAX_TX_POWER)) {
printf("ERR: TX Powar must be in the rage of %d to %d. \n", MIN_TX_POWER, MAX_TX_POWER);
ret = UAP_FAILURE;
}
}
break;
case PROTOCOL:
if ((argc > 2) || (ISDIGIT(argv[0]) == 0)) {
printf("ERR:Invalid Protocol\n");
ret = UAP_FAILURE;
} else
ret = is_protocol_valid(atoi(argv[0]));
break;
case AKM_SUITE:
if (argc == 2) {
if (A2HEXDECIMAL(argv[1]) &
~(KEY_MGMT_PSK | KEY_MGMT_PSK_SHA256 | KEY_MGMT_EAP
| KEY_MGMT_NONE | KEY_MGMT_SAE)) {
printf("ERR: Invalid AKM suite\n");
ret = UAP_FAILURE;
}
}
break;
case CHANNEL:
if ((argc != 1) && (argc != 2)) {
printf("ERR: Incorrect arguments for channel.\n");
ret = UAP_FAILURE;
} else {
if (argc == 2) {
if ((ISDIGIT(argv[1]) == 0) ||
(atoi(argv[1]) & ~CHANNEL_MODE_MASK)) {
printf("ERR: Invalid Mode\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[1]) & BITMAP_ACS_MODE) &&
(atoi(argv[0]) != 0)) {
printf("ERR: Channel must be 0 for ACS; MODE = 1.\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[1]) & BITMAP_CHANNEL_ABOVE) &&
(atoi(argv[1]) & BITMAP_CHANNEL_BELOW)) {
printf("ERR: secondary channel above and below both are enabled\n");
ret = UAP_FAILURE;
}
}
if ((argc == 1) || (!(atoi(argv[1]) & BITMAP_ACS_MODE))) {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < 1) ||
(atoi(argv[0]) > MAX_CHANNELS)) {
printf("ERR: Channel must be in the range of 1 to %d\n", MAX_CHANNELS);
ret = UAP_FAILURE;
}
if ((atoi(argv[0]) > MAX_CHANNELS_BG) &&
!(is_valid_a_band_channel(atoi(argv[0])))) {
printf("ERR: Invalid Channel in 'a' band!\n");
ret = UAP_FAILURE;
}
ch = atoi(argv[0]);
if (ch <= MAX_CHANNELS_BG) {
if ((argc == 2) &&
(atoi(argv[1]) &
BITMAP_CHANNEL_ABOVE) &&
(atoi(argv[0]) >
MAX_CHANNEL_ABOVE)) {
printf("ERR: only allow channel 1-9 for secondary channel above\n");
ret = UAP_FAILURE;
}
if ((argc == 2) &&
(atoi(argv[1]) &
BITMAP_CHANNEL_BELOW) &&
((atoi(argv[0]) < MIN_CHANNEL_BELOW)
|| (atoi(argv[0]) == 14))) {
printf("ERR: only allow channel 5-13 for secondary channel below\n");
ret = UAP_FAILURE;
}
} else {
if (argc == 2) {
if ((atoi(argv[1]) &
BITMAP_CHANNEL_BELOW) &&
!is_valid_a_band_channel_below
(atoi(argv[0]))) {
printf("ERR: For given primary channel secondary channel can not be set below\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[1]) &
BITMAP_CHANNEL_ABOVE) &&
!is_valid_a_band_channel_above
(atoi(argv[0]))) {
printf("ERR: For given primary channel secondary channel can not be set above\n");
ret = UAP_FAILURE;
}
}
}
}
}
break;
case CHANNEL_EXT:
if (argc > 3) {
printf("ERR: Incorrect arguments for channel_ext.\n");
ret = UAP_FAILURE;
} else {
if (argc == 3) {
if ((ISDIGIT(argv[2]) == 0) ||
(atoi(argv[2]) & ~CHANNEL_MODE_MASK)) {
printf("ERR: Invalid Mode\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[2]) & BITMAP_ACS_MODE) &&
(atoi(argv[0]) != 0)) {
printf("ERR: Channel must be 0 for ACS; MODE = 1.\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[2]) & BITMAP_CHANNEL_ABOVE) &&
(atoi(argv[2]) & BITMAP_CHANNEL_BELOW)) {
printf("ERR: secondary channel above and below both are enabled\n");
ret = UAP_FAILURE;
}
}
if ((argc == 2) &&
((ISDIGIT(argv[1]) == 0) || (atoi(argv[1]) < 0) ||
atoi(argv[1]) > 1)) {
printf("ERR:Invalid band\n");
ret = UAP_FAILURE;
}
if ((argc == 1) ||
((argc == 3) &&
!(atoi(argv[2]) & BITMAP_ACS_MODE))) {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < 1) ||
(atoi(argv[0]) > MAX_CHANNELS)) {
printf("ERR: Channel must be in the range of 1 to %d\n", MAX_CHANNELS);
ret = UAP_FAILURE;
}
if ((atoi(argv[0]) > MAX_CHANNELS_BG) &&
!(is_valid_a_band_channel(atoi(argv[0])))) {
printf("ERR: Invalid Channel in 'a' band!\n");
ret = UAP_FAILURE;
}
ch = atoi(argv[0]);
if (ch <= MAX_CHANNELS_BG) {
if ((argc == 3) &&
(atoi(argv[2]) &
BITMAP_CHANNEL_ABOVE) &&
(atoi(argv[0]) >
MAX_CHANNEL_ABOVE)) {
printf("ERR: only allow channel 1-9 for secondary channel above\n");
ret = UAP_FAILURE;
}
if ((argc == 3) &&
(atoi(argv[2]) &
BITMAP_CHANNEL_BELOW) &&
((atoi(argv[0]) < MIN_CHANNEL_BELOW)
|| (atoi(argv[0]) == 14))) {
printf("ERR: only allow channel 5-13 for secondary channel below\n");
ret = UAP_FAILURE;
}
} else {
if (argc == 3) {
if ((atoi(argv[2]) &
BITMAP_CHANNEL_BELOW) &&
!is_valid_a_band_channel_below
(atoi(argv[0]))) {
printf("ERR: For given primary channel secondary channel can not be set below\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[2]) &
BITMAP_CHANNEL_ABOVE) &&
!is_valid_a_band_channel_above
(atoi(argv[0]))) {
printf("ERR: For given primary channel secondary channel can not be set above\n");
ret = UAP_FAILURE;
}
}
}
}
}
break;
case BAND:
if (argc > 1) {
printf("ERR: Incorrect number of BAND arguments.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1)) {
printf("ERR: Invalid band.\n");
ret = UAP_FAILURE;
}
}
break;
case RATE:
if (argc > MAX_RATES) {
printf("ERR: Incorrect number of RATES arguments.\n");
ret = UAP_FAILURE;
} else {
for (i = 0; i < argc; i++) {
if ((IS_HEX_OR_DIGIT(argv[i]) == UAP_FAILURE) ||
(is_rate_valid
(A2HEXDECIMAL(argv[i]) &
~BASIC_RATE_SET_BIT)
!= UAP_SUCCESS)) {
printf("ERR:Unsupported rate.\n");
ret = UAP_FAILURE;
break;
}
}
if ((ret != UAP_FAILURE) &&
(has_dup_rate(argc, argv) != UAP_SUCCESS)) {
printf("ERR: Duplicate rate values entered\n");
ret = UAP_FAILURE;
}
if (check_mandatory_rates(argc, argv) != UAP_SUCCESS) {
ret = UAP_FAILURE;
}
}
break;
case BROADCASTSSID:
if (argc != 1) {
printf("ERR:wrong BROADCASTSSID arguments.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
((atoi(argv[0]) != 0) && (atoi(argv[0]) != 1) &&
(atoi(argv[0]) != 2))) {
printf("ERR:Illegal parameter %s for BROADCASTSSID. Must be either '0', '1' or '2'.\n", argv[0]);
ret = UAP_FAILURE;
}
}
break;
case RTSTHRESH:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for RTSTHRESHOLD\n");
ret = UAP_FAILURE;
} else if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > MAX_RTS_THRESHOLD)) {
printf("ERR:Illegal RTSTHRESHOLD %s. The value must between 0 and %d\n", argv[0], MAX_RTS_THRESHOLD);
ret = UAP_FAILURE;
}
break;
case FRAGTHRESH:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for FRAGTHRESH\n");
ret = UAP_FAILURE;
} else if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < MIN_FRAG_THRESHOLD) ||
(atoi(argv[0]) > MAX_FRAG_THRESHOLD)) {
printf("ERR:Illegal FRAGTHRESH %s. The value must between %d and %d\n", argv[0], MIN_FRAG_THRESHOLD, MAX_FRAG_THRESHOLD);
ret = UAP_FAILURE;
}
break;
case DTIMPERIOD:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for DTIMPERIOD\n");
ret = UAP_FAILURE;
} else if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 1) ||
(atoi(argv[0]) > MAX_DTIM_PERIOD)) {
printf("ERR: DTIMPERIOD Value must be in range of 1 to %d\n", MAX_DTIM_PERIOD);
ret = UAP_FAILURE;
}
break;
case RSNREPLAYPROT:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for RSNREPLAYPROT\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1)) {
printf("ERR:Illegal RSNREPLAYPROT parameter %s. Must be either '0' or '1'.\n", argv[0]);
ret = UAP_FAILURE;
}
}
break;
case RADIOCONTROL:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for RADIOCONTROL\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1)) {
printf("ERR:Illegal RADIOCONTROL parameter %s. Must be either '0' or '1'.\n", argv[0]);
ret = UAP_FAILURE;
}
}
break;
case TXRATECFG:
if (argc > 3) {
printf("ERR:Incorrect number of arguments for DATARATE\n");
ret = UAP_FAILURE;
} else {
if (((argc >= 1) &&
(IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE)) ||
((argc >= 2) &&
(IS_HEX_OR_DIGIT(argv[1]) == UAP_FAILURE))
|| ((argc >= 3) &&
(IS_HEX_OR_DIGIT(argv[2]) == UAP_FAILURE))
) {
printf("ERR: invalid Tx data rate\n");
ret = UAP_FAILURE;
} else if (argc >= 1) {
if (A2HEXDECIMAL(argv[0]) == 0xFF) {
if (argc != 1) {
printf("ERR: invalid auto rate input\n");
ret = UAP_FAILURE;
}
} else {
if ((A2HEXDECIMAL(argv[0]) > 3)
) {
printf("ERR: invalid format\n");
ret = UAP_FAILURE;
}
if (argc >= 2) {
if (((A2HEXDECIMAL(argv[0]) ==
0) &&
(A2HEXDECIMAL(argv[1]) >
11)) ||
((A2HEXDECIMAL(argv[0]) ==
1) &&
(A2HEXDECIMAL(argv[1]) !=
32) &&
(A2HEXDECIMAL(argv[1]) >
15)
)) {
printf("ERR:Incorrect TxRate %s.\n", argv[1]);
ret = UAP_FAILURE;
}
}
if (argc == 3) {
if (((A2HEXDECIMAL(argv[0]) !=
2) &&
(A2HEXDECIMAL(argv[0]) !=
3)) ||
((A2HEXDECIMAL(argv[2]) < 1)
|| (A2HEXDECIMAL(argv[2]) >
2))) {
printf("ERR:Incorrect nss.\n");
ret = UAP_FAILURE;
}
}
}
}
}
break;
case MCBCDATARATE:
case TXBEACONRATE:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for DATARATE\n");
ret = UAP_FAILURE;
} else {
if (IS_HEX_OR_DIGIT(argv[0]) == UAP_FAILURE) {
printf("ERR: invalid data rate\n");
ret = UAP_FAILURE;
} else if ((A2HEXDECIMAL(argv[0]) != 0) &&
(is_rate_valid
(A2HEXDECIMAL(argv[0]) &
~BASIC_RATE_SET_BIT) != UAP_SUCCESS)) {
printf("ERR: invalid data rate\n");
ret = UAP_FAILURE;
}
}
break;
case PKTFWD:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for PKTFWD.\n");
ret = UAP_FAILURE;
} else if ((ISDIGIT(argv[0]) == 0) ||
((atoi(argv[0]) < 0) || (atoi(argv[0]) > 15))) {
printf("ERR:Illegal PKTFWD parameter %s. Must be within '0' and '15'.\n", argv[0]);
ret = UAP_FAILURE;
}
break;
case STAAGEOUTTIMER:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for STAAGEOUTTIMER.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || ((atoi(argv[0]) != 0) &&
((atoi(argv[0]) <
MIN_STAGE_OUT_TIME) ||
(atoi(argv[0]) >
MAX_STAGE_OUT_TIME))))
{
printf("ERR:Illegal STAAGEOUTTIMER %s. Must be between %d and %d.\n", argv[0], MIN_STAGE_OUT_TIME, MAX_STAGE_OUT_TIME);
ret = UAP_FAILURE;
}
}
break;
case PSSTAAGEOUTTIMER:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for PSSTAAGEOUTTIMER.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || ((atoi(argv[0]) != 0) &&
((atoi(argv[0]) <
MIN_STAGE_OUT_TIME) ||
(atoi(argv[0]) >
MAX_STAGE_OUT_TIME))))
{
printf("ERR:Illegal PSSTAAGEOUTTIMER %s. Must be between %d and %d.\n", argv[0], MIN_STAGE_OUT_TIME, MAX_STAGE_OUT_TIME);
ret = UAP_FAILURE;
}
}
break;
case AUTHMODE:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for AUTHMODE\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || ((atoi(argv[0]) != 0) &&
(atoi(argv[0]) != 1)
&& (atoi(argv[0]) != 3)
&& (atoi(argv[0]) !=
255))) {
printf("ERR:Illegal AUTHMODE parameter %s. Must be either '0','1','3' or 255''.\n", argv[0]);
ret = UAP_FAILURE;
}
}
break;
case GROUPREKEYTIMER:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for GROUPREKEYTIMER.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > MAX_GRP_TIMER)) {
printf("ERR: GROUPREKEYTIMER range is [0:%d] (0 for disable)\n", MAX_GRP_TIMER);
ret = UAP_FAILURE;
}
}
break;
case MAXSTANUM:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for MAXSTANUM\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) <= 0)) {
printf("ERR:Invalid STA_NUM argument %s.\n",
argv[0]);
ret = UAP_FAILURE;
}
}
break;
case BEACONPERIOD:
if (argc != 1) {
printf("ERR:Incorrect number of argument for BEACONPERIOD.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < MIN_BEACON_PERIOD)
|| (atoi(argv[0]) > MAX_BEACON_PERIOD)) {
printf("ERR: BEACONPERIOD must be in range of %d to %d.\n", MIN_BEACON_PERIOD, MAX_BEACON_PERIOD);
ret = UAP_FAILURE;
}
}
break;
case RETRYLIMIT:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for RETRY LIMIT\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) > MAX_RETRY_LIMIT) ||
(atoi(argv[0]) < 0)) {
printf("ERR:RETRY_LIMIT must be in the range of [0:%d]. The input was %s.\n", MAX_RETRY_LIMIT, argv[0]);
ret = UAP_FAILURE;
}
}
break;
case STICKYTIMCONFIG:
if ((argc != 1) && (argc != 3)) {
printf("ERR:Incorrect number of arguments for STICKY_TIM_CONFIG\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 2)) {
printf("ERR:Enable parameter must be 0, 1 or 2\n");
ret = UAP_FAILURE;
break;
}
if (((atoi(argv[0]) != 1) && (argc > 1))) {
printf("ERR: Invalid arguments\n");
ret = UAP_FAILURE;
break;
}
if ((atoi(argv[0]) == 1) && (argc != 3)) {
printf("ERR: Both duration and sticky bit mask must be provided for ENABLE = 1\n");
ret = UAP_FAILURE;
break;
}
if (argc > 1) {
if ((ISDIGIT(argv[1]) == 0)) {
printf("ERR: Invalid duration\n");
ret = UAP_FAILURE;
break;
}
if ((ISDIGIT(argv[2]) == 0) ||
(atoi(argv[2]) < 1) ||
(atoi(argv[2]) > 3)) {
printf("ERR:Invalid sticky bit mask\n");
ret = UAP_FAILURE;
break;
}
}
}
break;
case STICKYTIMSTAMACADDR:
if ((argc != 1) && (argc != 2)) {
printf("ERR:Incorrect number of STICKY_TIM_STA_MAC_ADDR arguments\n");
ret = UAP_FAILURE;
} else {
if ((argc == 2) &&
((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1))) {
printf("ERR:Invalid control parameter\n");
ret = UAP_FAILURE;
break;
}
}
break;
case COEX2040CONFIG:
if (argc != 1) {
printf("ERR: Incorrect number of 2040 COEX CONFIG arguments\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1)) {
printf("ERR:Invalid enable parameter\n");
ret = UAP_FAILURE;
break;
}
}
break;
case EAPOL_PWK_HSK:
if (argc != 2) {
printf("ERR:Incorrect number of EAPOL_PWK_HSK arguments.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (ISDIGIT(argv[1]) == 0)
|| (atoi(argv[0]) < 0) || (atoi(argv[1]) < 0)) {
printf("ERR:Illegal parameters for EAPOL_PWK_HSK. Must be digits greater than equal to zero.\n");
}
}
break;
case EAPOL_GWK_HSK:
if (argc != 2) {
printf("ERR:Incorrect number of EAPOL_GWK_HSK arguments.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (ISDIGIT(argv[1]) == 0)
|| (atoi(argv[0]) < 0) || (atoi(argv[1]) < 0)) {
printf("ERR:Illegal parameters for EAPOL_GWK_HSK. Must be digits greater than equal to zero.\n");
}
}
break;
case PREAMBLETYPE:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for PREAMBLE TYPE\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) > MAX_PREAMBLE_TYPE) ||
(atoi(argv[0]) < 0)) {
printf("ERR:PREAMBLE TYPE must be in the range of [0:%d]. The input was %s.\n", MAX_PREAMBLE_TYPE, argv[0]);
ret = UAP_FAILURE;
}
}
break;
case COEX_COMM_BITMAP:
if (argc != 1) {
printf("ERR:Incorrect number of argument for Bitmap.\n");
ret = UAP_FAILURE;
} else {
/* Only bit 0 is supported now, hence check for 1 or 0 */
if ((IS_HEX_OR_DIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < 0) || (atoi(argv[0]) > 1)) {
printf("ERR: Bitmap must have value of 1 or 0.\n");
ret = UAP_FAILURE;
}
}
break;
case COEX_COMM_AP_COEX:
if (argc != 1) {
printf("ERR:Incorrect number of argument for APBTCoex.\n");
ret = UAP_FAILURE;
} else {
if ((IS_HEX_OR_DIGIT(argv[0]) == 0) ||
(atoi(argv[0]) < 0) || (atoi(argv[0]) > 1)) {
printf("ERR: APBTCoex must have value of 1 or 0.\n");
ret = UAP_FAILURE;
}
}
break;
case COEX_SCO_ACL_FREQ:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for aclFrequency.\n");
ret = UAP_FAILURE;
} else {
if (ISDIGIT(argv[0]) == 0) {
printf("ERR: Incorrect value for aclFrequency.\n");
ret = UAP_FAILURE;
}
}
break;
case COEX_ACL_ENABLED:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for (acl) enabled.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || (atoi(argv[0]) < 0) ||
(atoi(argv[0]) > 1)) {
printf("ERR: (acl) enabled must have value of 1 or 0.\n");
ret = UAP_FAILURE;
}
}
break;
case COEX_ACL_BT_TIME:
case COEX_ACL_WLAN_TIME:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for bt/wlan time.\n");
ret = UAP_FAILURE;
} else {
if (ISDIGIT(argv[0]) == 0) {
printf("ERR: Incorrect value for bt/wlan time.\n");
ret = UAP_FAILURE;
}
}
break;
case COEX_PROTECTION:
if (argc != 2) {
printf("ERR:Incorrect number of arguments for %s.\n",
argv[0]);
ret = UAP_FAILURE;
} else {
if (ISDIGIT(argv[1]) == 0) {
printf("ERR: Incorrect value for %s.\n",
argv[0]);
ret = UAP_FAILURE;
}
}
break;
case PWK_CIPHER:
if ((argc != 1) && (argc != 2)) {
printf("ERR:Incorrect number of arguments for pwk_cipher.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) & ~PROTOCOL_BITMAP)) {
printf("Invalid Protocol paramter.\n");
ret = UAP_FAILURE;
}
if (argc == 2) {
if ((ISDIGIT(argv[1]) == 0) ||
(atoi(argv[1]) & ~CIPHER_BITMAP)) {
printf("Invalid pairwise cipher.\n");
ret = UAP_FAILURE;
}
}
}
break;
case GWK_CIPHER:
if (argc != 1) {
printf("ERR:Incorrect number of arguments for gwk_cipher.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) ||
(atoi(argv[0]) & ~CIPHER_BITMAP) ||
(atoi(argv[0]) == AES_CCMP_TKIP)) {
printf("Invalid group cipher.\n");
ret = UAP_FAILURE;
}
}
break;
case RESTRICT_CLIENT_MODE:
if ((argc != 1) && (argc != 2)) {
printf("ERR: Incorrect number of arguments.\n");
ret = UAP_FAILURE;
} else {
if ((ISDIGIT(argv[0]) == 0) || ((argc == 2) &&
((IS_HEX_OR_DIGIT
(argv[1]) == 0) ||
((atoi(argv[0]) < 0) ||
(atoi(argv[0]) >
1))))) {
printf("ERR: Invalid arguments\n");
ret = UAP_FAILURE;
}
if ((atoi(argv[0]) == 1) && (argc == 1)) {
printf("ERR: Mode_config parameter must be provided to enable this feature.\n");
ret = UAP_FAILURE;
}
if ((argc == 2) &&
(((A2HEXDECIMAL(argv[1]) << 8) != B_ONLY_MASK) &&
((A2HEXDECIMAL(argv[1]) << 8) != G_ONLY_MASK) &&
((A2HEXDECIMAL(argv[1]) << 8) != A_ONLY_MASK) &&
((A2HEXDECIMAL(argv[1]) << 8) != N_ONLY_MASK) &&
((A2HEXDECIMAL(argv[1]) << 8) != AC_ONLY_MASK))) {
printf("ERR: Exactly one mode can be enabled at a time.\n");
ret = UAP_FAILURE;
}
}
break;
default:
ret = UAP_FAILURE;
break;
}
return ret;
}
/**
* @brief Converts colon separated MAC address to hex value
*
* @param mac A pointer to the colon separated MAC string
* @param raw A pointer to the hex data buffer
* @return UAP_SUCCESS or UAP_FAILURE
* UAP_RET_MAC_BROADCAST - if broadcast mac
* UAP_RET_MAC_MULTICAST - if multicast mac
*/
int
mac2raw(char *mac, t_u8 *raw)
{
unsigned int temp_raw[ETH_ALEN];
int num_tokens = 0;
int i;
if (strlen(mac) != ((2 * ETH_ALEN) + (ETH_ALEN - 1))) {
return UAP_FAILURE;
}
num_tokens = sscanf(mac, "%2x:%2x:%2x:%2x:%2x:%2x",
temp_raw + 0, temp_raw + 1, temp_raw + 2,
temp_raw + 3, temp_raw + 4, temp_raw + 5);
if (num_tokens != ETH_ALEN) {
return UAP_FAILURE;
}
for (i = 0; i < num_tokens; i++)
raw[i] = (t_u8)temp_raw[i];
if (memcmp(raw, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0) {
return UAP_RET_MAC_BROADCAST;
} else if (raw[0] & 0x01) {
return UAP_RET_MAC_MULTICAST;
}
return UAP_SUCCESS;
}
/**
* @brief Converts a string to hex value
*
* @param str A pointer to the string
* @param raw A pointer to the raw data buffer
* @return Number of bytes read
*/
int
string2raw(char *str, unsigned char *raw)
{
int len = (strlen(str) + 1) / 2;
do {
if (!isxdigit(*str)) {
return -1;
}
*str = toupper(*str);
*raw = CHAR2INT(*str) << 4;
++str;
*str = toupper(*str);
if (*str == '\0')
break;
*raw |= CHAR2INT(*str);
++raw;
} while (*++str != '\0');
return len;
}
/**
* @brief Prints a MAC address in colon separated form from hex data
*
* @param raw A pointer to the hex data buffer
* @return N/A
*/
void
print_mac(t_u8 *raw)
{
printf("%02x:%02x:%02x:%02x:%02x:%02x", (unsigned int)raw[0],
(unsigned int)raw[1], (unsigned int)raw[2], (unsigned int)raw[3],
(unsigned int)raw[4], (unsigned int)raw[5]);
return;
}
/**
* @brief Check hex string
*
* @param hex A pointer to hex string
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
ishexstring(void *hex)
{
int i, a;
char *p = hex;
int len = strlen(p);
if (!strncasecmp("0x", p, 2)) {
p += 2;
len -= 2;
}
for (i = 0; i < len; i++) {
a = hex2num(*p);
if (a < 0)
return UAP_FAILURE;
p++;
}
return UAP_SUCCESS;
}
/**
* @brief Show auth tlv
*
* @param tlv Pointer to auth tlv
*
* $return N/A
*/
void
print_auth(tlvbuf_auth_mode *tlv)
{
switch (tlv->auth_mode) {
case 0:
printf("AUTHMODE = Open authentication\n");
break;
case 1:
printf("AUTHMODE = Shared key authentication\n");
break;
case 3:
printf("AUTHMODE = WPA3 SAE\n");
break;
case 255:
printf("AUTHMODE = Auto (open and shared key)\n");
break;
default:
printf("ERR: Invalid authmode=%d\n", tlv->auth_mode);
break;
}
}
/**
*
* @brief Show cipher tlv
*
* @param tlv Pointer to cipher tlv
*
* $return N/A
*/
void
print_cipher(tlvbuf_cipher *tlv)
{
switch (tlv->pairwise_cipher) {
case CIPHER_TKIP:
printf("PairwiseCipher = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("PairwiseCipher = AES CCMP\n");
break;
case CIPHER_TKIP | CIPHER_AES_CCMP:
printf("PairwiseCipher = TKIP + AES CCMP\n");
break;
case CIPHER_NONE:
printf("PairwiseCipher = None\n");
break;
default:
printf("Unknown Pairwise cipher 0x%x\n", tlv->pairwise_cipher);
break;
}
switch (tlv->group_cipher) {
case CIPHER_TKIP:
printf("GroupCipher = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("GroupCipher = AES CCMP\n");
break;
case CIPHER_NONE:
printf("GroupCipher = None\n");
break;
default:
printf("Unknown Group cipher 0x%x\n", tlv->group_cipher);
break;
}
}
/**
* @brief Show pairwise cipher tlv
*
* @param tlv Pointer to pairwise cipher tlv
*
* $return N/A
*/
void
print_pwk_cipher(tlvbuf_pwk_cipher *tlv)
{
switch (tlv->protocol) {
case PROTOCOL_WPA:
printf("Protocol WPA : ");
break;
case PROTOCOL_WPA2:
printf("Protocol WPA2 : ");
break;
case PROTOCOL_WPA3_SAE:
printf("Protocol WPA3_SAE : ");
break;
default:
printf("Unknown Protocol 0x%x\n", tlv->protocol);
break;
}
switch (tlv->pairwise_cipher) {
case CIPHER_TKIP:
printf("PairwiseCipher = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("PairwiseCipher = AES CCMP\n");
break;
case CIPHER_TKIP | CIPHER_AES_CCMP:
printf("PairwiseCipher = TKIP + AES CCMP\n");
break;
case CIPHER_NONE:
printf("PairwiseCipher = None\n");
break;
default:
printf("Unknown Pairwise cipher 0x%x\n", tlv->pairwise_cipher);
break;
}
}
/**
* @brief Show group cipher tlv
*
* @param tlv Pointer to group cipher tlv
*
* $return N/A
*/
void
print_gwk_cipher(tlvbuf_gwk_cipher *tlv)
{
switch (tlv->group_cipher) {
case CIPHER_TKIP:
printf("GroupCipher = TKIP\n");
break;
case CIPHER_AES_CCMP:
printf("GroupCipher = AES CCMP\n");
break;
case CIPHER_NONE:
printf("GroupCipher = None\n");
break;
default:
printf("Unknown Group cipher 0x%x\n", tlv->group_cipher);
break;
}
}
/**
* @brief Show mac filter tlv
*
* @param tlv Pointer to filter tlv
*
* $return N/A
*/
void
print_mac_filter(tlvbuf_sta_mac_addr_filter *tlv)
{
int i;
switch (tlv->filter_mode) {
case 0:
printf("Filter Mode = Filter table is disabled\n");
return;
case 1:
if (!tlv->count) {
printf("No mac address is allowed to connect\n");
} else {
printf("Filter Mode = Allow mac address specified in the allowed list\n");
}
break;
case 2:
if (!tlv->count) {
printf("No mac address is blocked\n");
} else {
printf("Filter Mode = Block MAC addresses specified in the banned list\n");
}
break;
}
for (i = 0; i < tlv->count; i++) {
printf("MAC_%d = ", i);
print_mac(&tlv->mac_address[i * ETH_ALEN]);
printf("\n");
}
}
/**
* @brief Show rate tlv
*
* @param tlv Pointer to rate tlv
*
* $return N/A
*/
void
print_rate(tlvbuf_rates *tlv)
{
int flag = 0;
int i;
t_u16 tlv_len;
tlv_len = *(t_u8 *)&tlv->length;
tlv_len |= (*((t_u8 *)&tlv->length + 1) << 8);
printf("Basic Rates =");
for (i = 0; i < tlv_len; i++) {
if (tlv->operational_rates[i] > (BASIC_RATE_SET_BIT - 1)) {
flag = flag ? : 1;
printf(" 0x%x", tlv->operational_rates[i]);
}
}
printf("%s\nNon-Basic Rates =", flag ? "" : " ( none ) ");
for (flag = 0, i = 0; i < tlv_len; i++) {
if (tlv->operational_rates[i] < BASIC_RATE_SET_BIT) {
flag = flag ? : 1;
printf(" 0x%x", tlv->operational_rates[i]);
}
}
printf("%s\n", flag ? "" : " ( none ) ");
}
/**
* @brief Show all the tlv in the buf
*
* @param buf Pointer to tlv buffer
* @param len Tlv buffer len
*
* $return N/A
*/
void
print_tlv(t_u8 *buf, t_u16 len)
{
tlvbuf_header *pcurrent_tlv = (tlvbuf_header *)buf;
int tlv_buf_left = len;
t_u16 tlv_type;
t_u16 tlv_len;
t_u16 tlv_val_16;
t_u32 tlv_val_32;
t_u8 ssid[33];
int i = 0;
tlvbuf_ap_mac_address *mac_tlv;
tlvbuf_ssid *ssid_tlv;
tlvbuf_beacon_period *beacon_tlv;
tlvbuf_dtim_period *dtim_tlv;
tlvbuf_rates *rates_tlv;
tlvbuf_tx_power *txpower_tlv;
tlvbuf_bcast_ssid_ctl *bcast_tlv;
tlvbuf_preamble_ctl *preamble_tlv;
tlvbuf_bss_status *bss_status_tlv;
tlvbuf_rts_threshold *rts_tlv;
tlvbuf_mcbc_data_rate *mcbcrate_tlv;
tlvbuf_pkt_fwd_ctl *pkt_fwd_tlv;
tlvbuf_sta_ageout_timer *ageout_tlv;
tlvbuf_ps_sta_ageout_timer *ps_ageout_tlv;
tlvbuf_auth_mode *auth_tlv;
tlvbuf_protocol *proto_tlv;
tlvbuf_akmp *akmp_tlv;
tlvbuf_cipher *cipher_tlv;
tlvbuf_pwk_cipher *pwk_cipher_tlv;
tlvbuf_gwk_cipher *gwk_cipher_tlv;
tlvbuf_group_rekey_timer *rekey_tlv;
tlvbuf_wpa_passphrase *psk_tlv;
tlvbuf_coex_common_cfg *coex_common_tlv;
tlvbuf_coex_sco_cfg *coex_sco_tlv;
tlvbuf_coex_acl_cfg *coex_acl_tlv;
tlvbuf_coex_stats *coex_stats_tlv;
tlvbuf_wep_key *wep_tlv;
tlvbuf_frag_threshold *frag_tlv;
tlvbuf_sta_mac_addr_filter *filter_tlv;
tlvbuf_max_sta_num *max_sta_tlv;
tlvbuf_retry_limit *retry_limit_tlv;
tlvbuf_eapol_pwk_hsk_timeout *pwk_timeout_tlv;
tlvbuf_eapol_pwk_hsk_retries *pwk_retries_tlv;
tlvbuf_eapol_gwk_hsk_timeout *gwk_timeout_tlv;
tlvbuf_eapol_gwk_hsk_retries *gwk_retries_tlv;
tlvbuf_channel_config *channel_tlv;
tlvbuf_channel_list *chnlist_tlv;
channel_list *pchan_list;
t_u16 custom_ie_len;
tlvbuf_rsn_replay_prot *replay_prot_tlv;
tlvbuf_custom_ie *custom_ie_tlv;
custom_ie *custom_ie_ptr;
tlvbuf_max_mgmt_ie *max_mgmt_ie_tlv;
tlvbuf_wmm_para_t *wmm_para_tlv;
int flag = 0;
tlvbuf_htcap_t *ht_cap_tlv;
tlvbuf_htinfo_t *ht_info_tlv;
tlvbuf_2040_coex *coex_2040_tlv;
#ifdef RX_PACKET_COALESCE
tlvbuf_rx_pkt_coal_t *rx_pkt_coal_tlv;
#endif
#if DEBUG
uap_printf(MSG_DEBUG, "tlv total len=%d\n", len);
#endif
while (tlv_buf_left >= (int)sizeof(tlvbuf_header)) {
tlv_type = *(t_u8 *)&pcurrent_tlv->type;
tlv_type |= (*((t_u8 *)&pcurrent_tlv->type + 1) << 8);
tlv_len = *(t_u8 *)&pcurrent_tlv->len;
tlv_len |= (*((t_u8 *)&pcurrent_tlv->len + 1) << 8);
if ((sizeof(tlvbuf_header) + tlv_len) >
(unsigned int)tlv_buf_left) {
printf("wrong tlv: tlv_len=%d, tlv_buf_left=%d\n",
tlv_len, tlv_buf_left);
break;
}
switch (tlv_type) {
case MRVL_AP_MAC_ADDRESS_TLV_ID:
mac_tlv = (tlvbuf_ap_mac_address *)pcurrent_tlv;
printf("AP MAC address = ");
print_mac(mac_tlv->ap_mac_addr);
printf("\n");
break;
case MRVL_SSID_TLV_ID:
memset(ssid, 0, sizeof(ssid));
ssid_tlv = (tlvbuf_ssid *)pcurrent_tlv;
strncpy((char *)ssid, (char *)ssid_tlv->ssid,
sizeof(ssid) - 1);
printf("SSID = %s\n", ssid);
break;
case MRVL_BEACON_PERIOD_TLV_ID:
beacon_tlv = (tlvbuf_beacon_period *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&beacon_tlv->beacon_period_ms;
tlv_val_16 |=
(*((t_u8 *)&beacon_tlv->beacon_period_ms + 1) <<
8);
printf("Beacon period = %d\n", tlv_val_16);
break;
case MRVL_DTIM_PERIOD_TLV_ID:
dtim_tlv = (tlvbuf_dtim_period *)pcurrent_tlv;
printf("DTIM period = %d\n", dtim_tlv->dtim_period);
break;
case MRVL_CHANNELCONFIG_TLV_ID:
channel_tlv = (tlvbuf_channel_config *)pcurrent_tlv;
printf("Channel = %d\n", channel_tlv->chan_number);
printf("Band = %s\n",
(channel_tlv->bandcfg.chanBand ==
BAND_5GHZ) ? "5GHz" : "2.4GHz");
printf("Channel Select Mode = %s\n",
(channel_tlv->bandcfg.scanMode ==
SCAN_MODE_ACS) ? "ACS" : "Manual");
if (channel_tlv->bandcfg.chan2Offset == SEC_CHAN_NONE)
printf("no secondary channel\n");
else if (channel_tlv->bandcfg.chan2Offset ==
SEC_CHAN_ABOVE)
printf("secondary channel is above primary channel\n");
else if (channel_tlv->bandcfg.chan2Offset ==
SEC_CHAN_BELOW)
printf("secondary channel is below primary channel\n");
break;
case MRVL_CHANNELLIST_TLV_ID:
chnlist_tlv = (tlvbuf_channel_list *)pcurrent_tlv;
printf("Channels List = ");
pchan_list =
(channel_list *) & (chnlist_tlv->chan_list);
if (tlv_len % sizeof(channel_list)) {
break;
}
for (i = 0;
(unsigned int)i < (tlv_len / sizeof(channel_list));
i++) {
printf("\n%d\t%sGHz", pchan_list->chan_number,
(pchan_list->bandcfg.chanBand ==
BAND_5GHZ) ? "5" : "2.4");
pchan_list++;
}
printf("\n");
break;
case MRVL_RSN_REPLAY_PROT_TLV_ID:
replay_prot_tlv =
(tlvbuf_rsn_replay_prot *)pcurrent_tlv;
printf("RSN replay protection = %s\n",
replay_prot_tlv->
rsn_replay_prot ? "enabled" : "disabled");
break;
case MRVL_RATES_TLV_ID:
rates_tlv = (tlvbuf_rates *)pcurrent_tlv;
print_rate(rates_tlv);
break;
case MRVL_TX_POWER_TLV_ID:
txpower_tlv = (tlvbuf_tx_power *)pcurrent_tlv;
printf("Tx power = %d dBm\n",
txpower_tlv->tx_power_dbm);
break;
case MRVL_BCAST_SSID_CTL_TLV_ID:
bcast_tlv = (tlvbuf_bcast_ssid_ctl *)pcurrent_tlv;
printf("SSID broadcast = %s\n",
(bcast_tlv->bcast_ssid_ctl ==
1) ? "enabled" : "disabled");
break;
case MRVL_PREAMBLE_CTL_TLV_ID:
preamble_tlv = (tlvbuf_preamble_ctl *)pcurrent_tlv;
printf("Preamble type = %s\n",
(preamble_tlv->preamble_type ==
0) ? "auto" : ((preamble_tlv->preamble_type ==
1) ? "short" : "long"));
break;
case MRVL_BSS_STATUS_TLV_ID:
bss_status_tlv = (tlvbuf_bss_status *)pcurrent_tlv;
printf("BSS status = %s\n",
(bss_status_tlv->bss_status ==
0) ? "stopped" : "started");
break;
case MRVL_RTS_THRESHOLD_TLV_ID:
rts_tlv = (tlvbuf_rts_threshold *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&rts_tlv->rts_threshold;
tlv_val_16 |=
(*((t_u8 *)&rts_tlv->rts_threshold + 1) << 8);
printf("RTS threshold = %d\n", tlv_val_16);
break;
case MRVL_FRAG_THRESHOLD_TLV_ID:
frag_tlv = (tlvbuf_frag_threshold *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&frag_tlv->frag_threshold;
tlv_val_16 |=
(*((t_u8 *)&frag_tlv->frag_threshold + 1) << 8);
printf("Fragmentation threshold = %d\n", tlv_val_16);
break;
case MRVL_MCBC_DATA_RATE_TLV_ID:
mcbcrate_tlv = (tlvbuf_mcbc_data_rate *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&mcbcrate_tlv->mcbc_datarate;
tlv_val_16 |=
(*((t_u8 *)&mcbcrate_tlv->mcbc_datarate + 1) <<
8);
if (mcbcrate_tlv->mcbc_datarate == 0)
printf("MCBC data rate = auto\n");
else
printf("MCBC data rate = 0x%x\n", tlv_val_16);
break;
case MRVL_PKT_FWD_CTL_TLV_ID:
pkt_fwd_tlv = (tlvbuf_pkt_fwd_ctl *)pcurrent_tlv;
printf("%s handles packet forwarding -\n",
((pkt_fwd_tlv->pkt_fwd_ctl & PKT_FWD_FW_BIT) ==
0) ? "Host" : "Firmware");
printf("\tIntra-BSS broadcast packets are %s\n",
((pkt_fwd_tlv->
pkt_fwd_ctl & PKT_FWD_INTRA_BCAST) ==
0) ? "allowed" : "denied");
printf("\tIntra-BSS unicast packets are %s\n",
((pkt_fwd_tlv->
pkt_fwd_ctl & PKT_FWD_INTRA_UCAST) ==
0) ? "allowed" : "denied");
printf("\tInter-BSS unicast packets are %s\n",
((pkt_fwd_tlv->
pkt_fwd_ctl & PKT_FWD_INTER_UCAST) ==
0) ? "allowed" : "denied");
break;
case MRVL_STA_AGEOUT_TIMER_TLV_ID:
ageout_tlv = (tlvbuf_sta_ageout_timer *)pcurrent_tlv;
tlv_val_32 = *(t_u8 *)&ageout_tlv->sta_ageout_timer_ms;
tlv_val_32 |=
(*((t_u8 *)&ageout_tlv->sta_ageout_timer_ms + 1)
<< 8);
tlv_val_32 |=
(*((t_u8 *)&ageout_tlv->sta_ageout_timer_ms + 2)
<< 16);
tlv_val_32 |=
(*((t_u8 *)&ageout_tlv->sta_ageout_timer_ms + 3)
<< 24);
printf("STA ageout timer = %d\n", (int)tlv_val_32);
break;
case MRVL_PS_STA_AGEOUT_TIMER_TLV_ID:
ps_ageout_tlv =
(tlvbuf_ps_sta_ageout_timer *)pcurrent_tlv;
tlv_val_32 =
*(t_u8 *)&ps_ageout_tlv->ps_sta_ageout_timer_ms;
tlv_val_32 |=
(*
((t_u8 *)&ps_ageout_tlv->
ps_sta_ageout_timer_ms + 1) << 8);
tlv_val_32 |=
(*
((t_u8 *)&ps_ageout_tlv->
ps_sta_ageout_timer_ms + 2) << 16);
tlv_val_32 |=
(*
((t_u8 *)&ps_ageout_tlv->
ps_sta_ageout_timer_ms + 3) << 24);
printf("PS STA ageout timer = %d\n", (int)tlv_val_32);
break;
case MRVL_AUTH_TLV_ID:
auth_tlv = (tlvbuf_auth_mode *)pcurrent_tlv;
print_auth(auth_tlv);
break;
case MRVL_PROTOCOL_TLV_ID:
proto_tlv = (tlvbuf_protocol *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&proto_tlv->protocol;
tlv_val_16 |=
(*((t_u8 *)&proto_tlv->protocol + 1) << 8);
print_protocol(tlv_val_16);
break;
case MRVL_AKMP_TLV_ID:
akmp_tlv = (tlvbuf_akmp *)pcurrent_tlv;
tlv_val_16 = *(t_u8 *)&akmp_tlv->key_mgmt;
tlv_val_16 |= (*((t_u8 *)&akmp_tlv->key_mgmt + 1) << 8);
if (tlv_val_16 & (KEY_MGMT_PSK | KEY_MGMT_PSK_SHA256)) {
if (tlv_val_16 & KEY_MGMT_PSK)
printf("KeyMgmt = PSK\n");
if (tlv_val_16 & KEY_MGMT_PSK_SHA256)
printf("KeyMgmt = PSK_SHA256\n");
tlv_val_16 =
*(t_u8 *)&akmp_tlv->key_mgmt_operation;
if (tlv_len > sizeof(t_u16)) {
tlv_val_16 |=
(*
((t_u8 *)&akmp_tlv->
key_mgmt_operation + 1) << 8);
printf("Key Exchange on : %s.\n",
(tlv_val_16 & 0x01) ? "Host" :
"Device");
printf("1x Authentication on : %s.\n",
(tlv_val_16 & 0x10) ? "Host" :
"Device");
}
}
if (tlv_val_16 & KEY_MGMT_EAP)
printf("KeyMgmt = EAP");
if (tlv_val_16 & KEY_MGMT_NONE)
printf("KeyMgmt = NONE");
break;
case MRVL_CIPHER_TLV_ID:
cipher_tlv = (tlvbuf_cipher *)pcurrent_tlv;
print_cipher(cipher_tlv);
break;
case MRVL_CIPHER_PWK_TLV_ID:
pwk_cipher_tlv = (tlvbuf_pwk_cipher *)pcurrent_tlv;
pwk_cipher_tlv->protocol =
uap_le16_to_cpu(pwk_cipher_tlv->protocol);
print_pwk_cipher(pwk_cipher_tlv);
break;
case MRVL_CIPHER_GWK_TLV_ID:
gwk_cipher_tlv = (tlvbuf_gwk_cipher *)pcurrent_tlv;
print_gwk_cipher(gwk_cipher_tlv);
break;
case MRVL_GRP_REKEY_TIME_TLV_ID:
rekey_tlv = (tlvbuf_group_rekey_timer *)pcurrent_tlv;
tlv_val_32 = *(t_u8 *)&rekey_tlv->group_rekey_time_sec;
tlv_val_32 |=
(*((t_u8 *)&rekey_tlv->group_rekey_time_sec + 1)
<< 8);
tlv_val_32 |=
(*((t_u8 *)&rekey_tlv->group_rekey_time_sec + 2)
<< 16);
tlv_val_32 |=
(*((t_u8 *)&rekey_tlv->group_rekey_time_sec + 3)
<< 24);
if (tlv_val_32 == 0)
printf("Group re-key time = disabled\n");
else
printf("Group re-key time = %d second\n",
tlv_val_32);
break;
case MRVL_WPA_PASSPHRASE_TLV_ID:
psk_tlv = (tlvbuf_wpa_passphrase *)pcurrent_tlv;
if (tlv_len > 0) {
printf("WPA passphrase = ");
for (i = 0; i < tlv_len; i++)
printf("%c", psk_tlv->passphrase[i]);
printf("\n");
} else
printf("WPA passphrase = None\n");
break;
case MRVL_WEP_KEY_TLV_ID:
wep_tlv = (tlvbuf_wep_key *)pcurrent_tlv;
print_wep_key(wep_tlv);
break;
case MRVL_STA_MAC_ADDR_FILTER_TLV_ID:
filter_tlv = (tlvbuf_sta_mac_addr_filter *)pcurrent_tlv;
print_mac_filter(filter_tlv);
break;
case MRVL_MAX_STA_CNT_TLV_ID:
max_sta_tlv = (tlvbuf_max_sta_num *)pcurrent_tlv;
tlv_val_16 =
*(t_u8 *)&max_sta_tlv->max_sta_num_configured;
tlv_val_16 |=
(*
((t_u8 *)&max_sta_tlv->max_sta_num_configured +
1) << 8);
printf("Max Station Number configured = %d\n",
tlv_val_16);
if (max_sta_tlv->length == 4) {
tlv_val_16 =
*(t_u8 *)&max_sta_tlv->
max_sta_num_supported;
tlv_val_16 |=
(*
((t_u8 *)&max_sta_tlv->
max_sta_num_supported + 1) << 8);
printf("Max Station Number supported = %d\n",
tlv_val_16);
}
break;
case MRVL_RETRY_LIMIT_TLV_ID:
retry_limit_tlv = (tlvbuf_retry_limit *)pcurrent_tlv;
printf("Retry Limit = %d\n",
retry_limit_tlv->retry_limit);
break;
case MRVL_EAPOL_PWK_HSK_TIMEOUT_TLV_ID:
pwk_timeout_tlv =
(tlvbuf_eapol_pwk_hsk_timeout *)pcurrent_tlv;
pwk_timeout_tlv->pairwise_update_timeout =
uap_le32_to_cpu(pwk_timeout_tlv->
pairwise_update_timeout);
printf("Pairwise handshake timeout = %d\n",
pwk_timeout_tlv->pairwise_update_timeout);
break;
case MRVL_EAPOL_PWK_HSK_RETRIES_TLV_ID:
pwk_retries_tlv =
(tlvbuf_eapol_pwk_hsk_retries *)pcurrent_tlv;
pwk_retries_tlv->pwk_retries =
uap_le32_to_cpu(pwk_retries_tlv->pwk_retries);
printf("Pairwise handshake retries = %d\n",
pwk_retries_tlv->pwk_retries);
break;
case MRVL_EAPOL_GWK_HSK_TIMEOUT_TLV_ID:
gwk_timeout_tlv =
(tlvbuf_eapol_gwk_hsk_timeout *)pcurrent_tlv;
gwk_timeout_tlv->groupwise_update_timeout =
uap_le32_to_cpu(gwk_timeout_tlv->
groupwise_update_timeout);
printf("Groupwise handshake timeout = %d\n",
gwk_timeout_tlv->groupwise_update_timeout);
break;
case MRVL_EAPOL_GWK_HSK_RETRIES_TLV_ID:
gwk_retries_tlv =
(tlvbuf_eapol_gwk_hsk_retries *)pcurrent_tlv;
gwk_retries_tlv->gwk_retries =
uap_le32_to_cpu(gwk_retries_tlv->gwk_retries);
printf("Groupwise handshake retries = %d\n",
gwk_retries_tlv->gwk_retries);
break;
case MRVL_MGMT_IE_LIST_TLV_ID:
custom_ie_tlv = (tlvbuf_custom_ie *)pcurrent_tlv;
custom_ie_len = tlv_len;
custom_ie_ptr = (custom_ie *)(custom_ie_tlv->ie_data);
while (custom_ie_len >= sizeof(custom_ie)) {
custom_ie_ptr->ie_index =
uap_le16_to_cpu(custom_ie_ptr->
ie_index);
custom_ie_ptr->ie_length =
uap_le16_to_cpu(custom_ie_ptr->
ie_length);
custom_ie_ptr->mgmt_subtype_mask =
uap_le16_to_cpu(custom_ie_ptr->
mgmt_subtype_mask);
printf("Index [%d]\n", custom_ie_ptr->ie_index);
if (custom_ie_ptr->ie_length)
printf("Management Subtype Mask = 0x%02x\n", custom_ie_ptr->mgmt_subtype_mask == 0 ? UAP_CUSTOM_IE_AUTO_MASK : custom_ie_ptr->mgmt_subtype_mask);
else
printf("Management Subtype Mask = 0x%02x\n", custom_ie_ptr->mgmt_subtype_mask);
hexdump_data("IE Buffer",
(void *)custom_ie_ptr->ie_buffer,
(custom_ie_ptr->ie_length), ' ');
custom_ie_len -=
sizeof(custom_ie) +
custom_ie_ptr->ie_length;
custom_ie_ptr =
(custom_ie *)((t_u8 *)custom_ie_ptr +
sizeof(custom_ie) +
custom_ie_ptr->ie_length);
}
custom_ie_present = 1;
break;
case MRVL_MAX_MGMT_IE_TLV_ID:
max_mgmt_ie_tlv = (tlvbuf_max_mgmt_ie *)pcurrent_tlv;
max_mgmt_ie_tlv->count =
uap_le16_to_cpu(max_mgmt_ie_tlv->count);
for (i = 0; i < max_mgmt_ie_tlv->count; i++) {
max_mgmt_ie_tlv->info[i].buf_size =
uap_le16_to_cpu(max_mgmt_ie_tlv->
info[i].buf_size);
max_mgmt_ie_tlv->info[i].buf_count =
uap_le16_to_cpu(max_mgmt_ie_tlv->
info[i].buf_count);
printf("buf%d_size = %d\n", i,
max_mgmt_ie_tlv->info[i].buf_size);
printf("number of buffers = %d\n",
max_mgmt_ie_tlv->info[i].buf_count);
printf("\n");
}
max_mgmt_ie_print = 1;
break;
case MRVL_BT_COEX_COMMON_CFG_TLV_ID:
printf("Coex common configuration:\n");
coex_common_tlv =
(tlvbuf_coex_common_cfg *)pcurrent_tlv;
printf("\tConfig Bitmap = 0x%02x\n",
uap_le32_to_cpu(coex_common_tlv->config_bitmap));
printf("\tAP Coex Enabled = %d\n",
uap_le32_to_cpu(coex_common_tlv->ap_bt_coex));
break;
case MRVL_BT_COEX_SCO_CFG_TLV_ID:
printf("Coex sco configuration:\n");
coex_sco_tlv = (tlvbuf_coex_sco_cfg *)pcurrent_tlv;
for (i = 0; i < 4; i++)
printf("\tQtime protection [%d] = %d usecs\n",
i,
uap_le16_to_cpu(coex_sco_tlv->
protection_qtime[i]));
printf("\tProtection frame rate = %d\n",
uap_le16_to_cpu(coex_sco_tlv->protection_rate));
printf("\tACL frequency = %d\n",
uap_le16_to_cpu(coex_sco_tlv->acl_frequency));
break;
case MRVL_BT_COEX_ACL_CFG_TLV_ID:
printf("Coex acl configuration: ");
coex_acl_tlv = (tlvbuf_coex_acl_cfg *)pcurrent_tlv;
coex_acl_tlv->enabled =
uap_le16_to_cpu(coex_acl_tlv->enabled);
printf("%s\n",
(coex_acl_tlv->
enabled) ? "enabled" : "disabled");
if (coex_acl_tlv->enabled) {
printf("\tBT time = %d usecs\n",
uap_le16_to_cpu(coex_acl_tlv->bt_time));
printf("\tWLan time = %d usecs\n",
uap_le16_to_cpu(coex_acl_tlv->
wlan_time));
printf("\tProtection frame rate = %d\n",
uap_le16_to_cpu(coex_acl_tlv->
protection_rate));
}
break;
case MRVL_BT_COEX_STATS_TLV_ID:
printf("Coex statistics: \n");
coex_stats_tlv = (tlvbuf_coex_stats *)pcurrent_tlv;
printf("\tNull not sent = %d\n",
uap_le32_to_cpu(coex_stats_tlv->null_not_sent));
printf("\tNull queued = %d\n",
uap_le32_to_cpu(coex_stats_tlv->null_queued));
printf("\tNull not queued = %d\n",
uap_le32_to_cpu(coex_stats_tlv->
null_not_queued));
printf("\tCF End queued = %d\n",
uap_le32_to_cpu(coex_stats_tlv->cf_end_queued));
printf("\tCF End not queued = %d\n",
uap_le32_to_cpu(coex_stats_tlv->
cf_end_not_queued));
printf("\tNull allocation failures = %d\n",
uap_le32_to_cpu(coex_stats_tlv->
null_alloc_fail));
printf("\tCF End allocation failures = %d\n",
uap_le32_to_cpu(coex_stats_tlv->
cf_end_alloc_fail));
break;
case HT_CAPABILITY_TLV_ID:
printf("\nHT Capability Info: \n");
ht_cap_tlv = (tlvbuf_htcap_t *)pcurrent_tlv;
if (!ht_cap_tlv->ht_cap.supported_mcs_set[0]) {
printf("802.11n is disabled\n");
} else {
printf("802.11n is enabled\n");
printf("ht_cap_info=0x%x, ampdu_param=0x%x tx_bf_cap=%#x\n", uap_le16_to_cpu(ht_cap_tlv->ht_cap.ht_cap_info), ht_cap_tlv->ht_cap.ampdu_param, uap_le32_to_cpu(ht_cap_tlv->ht_cap.tx_bf_cap));
printf("supported MCS set:\n");
for (i = 0; i < MCS_SET_LEN; i++) {
printf("0x%x ",
ht_cap_tlv->ht_cap.
supported_mcs_set[i]);
}
printf("\n");
}
break;
case HT_INFO_TLV_ID:
ht_info_tlv = (tlvbuf_htinfo_t *)pcurrent_tlv;
if (ht_info_tlv->length) {
printf("\nHT Information Element: \n");
printf("Primary channel = %d\n",
ht_info_tlv->ht_info.pri_chan);
printf("Secondary channel offset = %d\n",
(int)GET_SECONDARY_CHAN(ht_info_tlv->
ht_info.field2));
printf("STA channel width = %dMHz\n",
IS_CHANNEL_WIDTH_40(ht_info_tlv->ht_info.
field2) ? 40 : 20);
printf("RIFS %s\n",
IS_RIFS_ALLOWED(ht_info_tlv->ht_info.
field2) ? "Allowed" :
"Prohibited");
ht_info_tlv->ht_info.field3 =
uap_le16_to_cpu(ht_info_tlv->ht_info.
field3);
ht_info_tlv->ht_info.field4 =
uap_le16_to_cpu(ht_info_tlv->ht_info.
field4);
printf("HT Protection = %d\n",
(int)GET_HT_PROTECTION(ht_info_tlv->
ht_info.field3));
printf("Non-Greenfield HT STAs present: %s\n",
NONGF_STA_PRESENT(ht_info_tlv->ht_info.
field3) ? "Yes" :
"No");
printf("OBSS Non-HT STAs present: %s\n",
OBSS_NONHT_STA_PRESENT(ht_info_tlv->
ht_info.
field3) ? "Yes" :
"No");
for (i = 0; i < MCS_SET_LEN; i++) {
if (ht_info_tlv->ht_info.
basic_mcs_set[i]) {
printf("Basic_mcs_set: \n");
flag = 1;
break;
}
}
if (flag) {
for (i = 0; i < MCS_SET_LEN; i++)
printf("%x ",
ht_info_tlv->ht_info.
basic_mcs_set[i]);
printf("\n");
}
}
break;
case MRVL_2040_BSS_COEX_CONTROL_TLV_ID:
coex_2040_tlv = (tlvbuf_2040_coex *)pcurrent_tlv;
printf("20/40 coex = %s\n",
(coex_2040_tlv->
enable) ? "enabled" : "disabled");
break;
case VENDOR_SPECIFIC_IE_TLV_ID:
wmm_para_tlv = (tlvbuf_wmm_para_t *)pcurrent_tlv;
printf("wmm parameters:\n");
printf("\tqos_info = 0x%x\n",
wmm_para_tlv->wmm_para.qos_info);
printf("\tBE: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
wmm_para_tlv->wmm_para.ac_params[AC_BE].
aci_aifsn.aifsn,
wmm_para_tlv->wmm_para.ac_params[AC_BE].ecw.
ecw_max,
wmm_para_tlv->wmm_para.ac_params[AC_BE].ecw.
ecw_min,
uap_le16_to_cpu(wmm_para_tlv->wmm_para.
ac_params[AC_BE].tx_op_limit));
printf("\tBK: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
wmm_para_tlv->wmm_para.ac_params[AC_BK].
aci_aifsn.aifsn,
wmm_para_tlv->wmm_para.ac_params[AC_BK].ecw.
ecw_max,
wmm_para_tlv->wmm_para.ac_params[AC_BK].ecw.
ecw_min,
uap_le16_to_cpu(wmm_para_tlv->wmm_para.
ac_params[AC_BK].tx_op_limit));
printf("\tVI: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
wmm_para_tlv->wmm_para.ac_params[AC_VI].
aci_aifsn.aifsn,
wmm_para_tlv->wmm_para.ac_params[AC_VI].ecw.
ecw_max,
wmm_para_tlv->wmm_para.ac_params[AC_VI].ecw.
ecw_min,
uap_le16_to_cpu(wmm_para_tlv->wmm_para.
ac_params[AC_VI].tx_op_limit));
printf("\tVO: AIFSN=%d, CW_MAX=%d CW_MIN=%d, TXOP=%d\n",
wmm_para_tlv->wmm_para.ac_params[AC_VO].
aci_aifsn.aifsn,
wmm_para_tlv->wmm_para.ac_params[AC_VO].ecw.
ecw_max,
wmm_para_tlv->wmm_para.ac_params[AC_VO].ecw.
ecw_min,
uap_le16_to_cpu(wmm_para_tlv->wmm_para.
ac_params[AC_VO].tx_op_limit));
break;
#ifdef RX_PACKET_COALESCE
case MRVL_RX_PKT_COAL_TLV_ID:
rx_pkt_coal_tlv = (tlvbuf_rx_pkt_coal_t *)pcurrent_tlv;
printf("RX packet coalesce threshold=%d\n",
uap_le32_to_cpu(rx_pkt_coal_tlv->rx_pkt_count));
printf("RX packet coalesce timeout in msec=%d\n",
uap_le16_to_cpu(rx_pkt_coal_tlv->delay));
break;
#endif
default:
break;
}
tlv_buf_left -= (sizeof(tlvbuf_header) + tlv_len);
pcurrent_tlv = (tlvbuf_header *)(pcurrent_tlv->data + tlv_len);
}
return;
}
/**
* @brief Checks if command requires driver handling, and if so,
* repackage and send as regular command, instead of hostcmd.
*
* @param cmd Pointer to the command buffer
* @param size Pointer to the command size. This value is
* overwritten by the function with the size of the
* received response.
* @param buf_size Size of the allocated command buffer
* @param reroute_ret Pointer to return value of rerouted command
* @return UAP_SUCCESS (handled here, further processing not needed)
* or UAP_FAILURE (not handled here, proceed as usual)
*/
static int
uap_ioctl_reroute(t_u8 *cmd, t_u16 *size, t_u16 buf_size, int *reroute_ret)
{
t_u8 reroute = 0;
t_u16 cmd_code = 0;
t_u16 cmd_action = 0;
apcmdbuf_cfg_80211d *hcmd_domain = NULL;
apcmdbuf_snmp_mib *hcmd_snmp = NULL;
tlvbuf_header *tlv = NULL;
struct ifreq ifr;
t_s32 sockfd;
t_u8 *buf = NULL;
t_u16 buf_len = 0;
snmp_mib_param *snmp_param = NULL;
domain_info_param *domain_param = NULL;
/* assume input is a hostcmd */
cmd_code = ((apcmdbuf *)(cmd))->cmd_code;
/* just check if we need to re-route right now */
switch (cmd_code) {
case HostCmd_SNMP_MIB:
hcmd_snmp = (apcmdbuf_snmp_mib *)cmd;
tlv = (tlvbuf_header *)(cmd + sizeof(apcmdbuf_snmp_mib));
cmd_action = uap_le16_to_cpu(hcmd_snmp->action);
/* reroute CMD_SNMP_MIB: SET */
if (cmd_action == ACTION_SET) {
reroute = 1;
buf_len =
sizeof(snmp_mib_param) +
uap_le16_to_cpu(tlv->len);
}
break;
case HostCmd_CMD_802_11D_DOMAIN_INFO:
hcmd_domain = (apcmdbuf_cfg_80211d *)cmd;
cmd_action = uap_le16_to_cpu(hcmd_domain->action);
/* reroute CMD_DOMAIN_INFO: SET */
if (cmd_action == ACTION_SET) {
reroute = 1;
buf_len = sizeof(domain_info_param) + (*size
-
sizeof
(apcmdbuf_cfg_80211d)
+
sizeof
(domain_param_t));
}
break;
}
/* Exit early if not re-routing */
if (!reroute || uap_ioctl_no_reroute)
return UAP_FAILURE;
/* Prepare buffer */
#if DEBUG
uap_printf(MSG_DEBUG, "DBG: rerouting CMD 0x%04x\n", cmd_code);
#endif
buf = (t_u8 *)malloc(buf_len);
if (!buf) {
printf("ERR:Cannot allocate buffer for command!\n");
goto done_no_socket;
}
memset(buf, 0, buf_len);
/* Prepare param */
switch (cmd_code) {
case HostCmd_SNMP_MIB:
snmp_param = (snmp_mib_param *)buf;
snmp_param->subcmd = UAP_SNMP_MIB;
snmp_param->action = cmd_action;
snmp_param->oid = uap_le16_to_cpu(tlv->type);
snmp_param->oid_val_len = uap_le16_to_cpu(tlv->len);
memcpy(snmp_param->oid_value, tlv->data,
MIN(sizeof(t_u32), snmp_param->oid_val_len));
break;
case HostCmd_CMD_802_11D_DOMAIN_INFO:
domain_param = (domain_info_param *)buf;
domain_param->subcmd = UAP_DOMAIN_INFO;
domain_param->action = cmd_action;
memcpy(domain_param->tlv, &hcmd_domain->domain,
buf_len - sizeof(domain_info_param));
tlv = (tlvbuf_header *)domain_param->tlv;
tlv->type = uap_le16_to_cpu(tlv->type);
tlv->len = uap_le16_to_cpu(tlv->len);
break;
}
#if DEBUG
/* Dump request buffer */
hexdump("Reroute Request buffer", buf, buf_len, ' ');
#endif
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
goto done_no_socket;
}
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)buf;
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, UAP_IOCTL_CMD, &ifr)) {
*reroute_ret = UAP_FAILURE;
perror("");
#if DEBUG
uap_printf(MSG_DEBUG, "ERR: reroute of CMD 0x%04x failed\n",
cmd_code);
#endif
goto done;
}
*reroute_ret = UAP_SUCCESS;
done:
/* Close socket */
close(sockfd);
done_no_socket:
if (buf)
free(buf);
return UAP_SUCCESS;
}
/**
* @brief Performs the ioctl operation to send the command to
* the driver.
*
* @param cmd Pointer to the command buffer
* @param size Pointer to the command size. This value is
* overwritten by the function with the size of the
* received response.
* @param buf_size Size of the allocated command buffer
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
uap_ioctl(t_u8 *cmd, t_u16 *size, t_u16 buf_size)
{
struct ifreq ifr;
apcmdbuf *header = NULL;
t_s32 sockfd;
int reroute_ret = 0;
mrvl_priv_cmd *mrvl_cmd = NULL;
t_u8 *buf = NULL, *temp = NULL;
t_u16 mrvl_header_len = 0;
int ret = UAP_SUCCESS;
#ifdef WIFI_DIRECT_SUPPORT
if (strncmp(dev_name, "wfd", 3))
#endif
if (uap_ioctl_reroute(cmd, size, buf_size, &reroute_ret) ==
UAP_SUCCESS) {
return reroute_ret;
}
if (buf_size < *size) {
printf("buf_size should not less than cmd buffer size\n");
return UAP_FAILURE;
}
/* Open socket */
if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
printf("ERR:Cannot open socket\n");
return UAP_FAILURE;
}
*(t_u32 *)cmd = buf_size - BUF_HEADER_SIZE;
mrvl_header_len = strlen(CMD_NXP) + strlen(PRIV_CMD_HOSTCMD);
buf = (unsigned char *)malloc(buf_size + sizeof(mrvl_priv_cmd) +
mrvl_header_len);
if (buf == NULL) {
close(sockfd);
return UAP_FAILURE;
}
memset(buf, 0, buf_size + sizeof(mrvl_priv_cmd) + mrvl_header_len);
/* Fill up buffer */
mrvl_cmd = (mrvl_priv_cmd *)buf;
mrvl_cmd->buf = buf + sizeof(mrvl_priv_cmd);
mrvl_cmd->used_len = 0;
mrvl_cmd->total_len = buf_size + mrvl_header_len;
/* Copy NXP command string */
temp = mrvl_cmd->buf;
strncpy((char *)temp, CMD_NXP, strlen(CMD_NXP));
temp += (strlen(CMD_NXP));
/* Insert command string */
strncpy((char *)temp, PRIV_CMD_HOSTCMD, strlen(PRIV_CMD_HOSTCMD));
temp += (strlen(PRIV_CMD_HOSTCMD));
memcpy(temp, (t_u8 *)cmd, *size);
/* Initialize the ifr structure */
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_ifrn.ifrn_name, dev_name, IFNAMSIZ - 1);
ifr.ifr_ifru.ifru_data = (void *)mrvl_cmd;
header = (apcmdbuf *)(buf + sizeof(mrvl_priv_cmd) + mrvl_header_len);
header->size = *size - BUF_HEADER_SIZE;
if (header->cmd_code == APCMD_SYS_CONFIGURE) {
apcmdbuf_sys_configure *sys_cfg;
sys_cfg = (apcmdbuf_sys_configure *)header;
sys_cfg->action = uap_cpu_to_le16(sys_cfg->action);
}
endian_convert_request_header(header);
#if DEBUG
/* Dump request buffer */
hexdump("Request buffer", mrvl_cmd,
*size + sizeof(mrvl_priv_cmd) + mrvl_header_len, ' ');
#endif
/* Perform ioctl */
errno = 0;
if (ioctl(sockfd, MRVLPRIVCMD, &ifr)) {
perror("");
printf("ERR:MRVLPRIVCMD is not supported by %s\n", dev_name);
ret = UAP_FAILURE;
goto done;
}
endian_convert_response_header(header);
header->cmd_code &= HostCmd_CMD_ID_MASK;
header->cmd_code |= APCMD_RESP_CHECK;
*size = header->size;
/* Validate response size */
if (*size > (buf_size - BUF_HEADER_SIZE)) {
printf("ERR:Response size (%d) greater than buffer size (%d)! Aborting!\n", *size, buf_size);
ret = UAP_FAILURE;
goto done;
}
memcpy(cmd, (t_u8 *)header, *size + BUF_HEADER_SIZE);
#if DEBUG
/* Dump respond buffer */
hexdump("Respond buffer", mrvl_cmd,
*size + BUF_HEADER_SIZE + sizeof(mrvl_priv_cmd) +
mrvl_header_len, ' ');
#endif
done:
/* Close socket */
close(sockfd);
if (buf)
free(buf);
return ret;
}
/**
* @brief Get protocol from the firmware
*
* @param proto A pointer to protocol var
* @return UAP_SUCCESS/UAP_FAILURE
*/
int
get_sys_cfg_protocol(t_u16 *proto)
{
apcmdbuf_sys_configure *cmd_buf = NULL;
tlvbuf_protocol *tlv = NULL;
t_u8 *buffer = NULL;
t_u16 cmd_len;
int ret = UAP_FAILURE;
cmd_len = sizeof(apcmdbuf_sys_configure) + sizeof(tlvbuf_protocol);
/* Initialize the command buffer */
buffer = (t_u8 *)malloc(cmd_len);
if (!buffer) {
printf("ERR:Cannot allocate buffer for command!\n");
return ret;
}
memset(buffer, 0, cmd_len);
/* Locate headers */
cmd_buf = (apcmdbuf_sys_configure *)buffer;
tlv = (tlvbuf_protocol *)(buffer + sizeof(apcmdbuf_sys_configure));
/* Fill the command buffer */
cmd_buf->cmd_code = APCMD_SYS_CONFIGURE;
cmd_buf->size = cmd_len;
cmd_buf->seq_num = 0;
cmd_buf->result = 0;
cmd_buf->action = ACTION_GET;
tlv->tag = MRVL_PROTOCOL_TLV_ID;
tlv->length = 2;
endian_convert_tlv_header_out(tlv);
/* Send the command */
ret = uap_ioctl((t_u8 *)cmd_buf, &cmd_len, cmd_len);
endian_convert_tlv_header_in(tlv);
/* Process response */
if (ret == UAP_SUCCESS) {
/* Verify response */
if (cmd_buf->cmd_code !=
(APCMD_SYS_CONFIGURE | APCMD_RESP_CHECK)) {
printf("ERR:Corrupted response! cmd_code=%x, Tlv->tag=%x\n", cmd_buf->cmd_code, tlv->tag);
free(buffer);
return UAP_FAILURE;
}
if (cmd_buf->result == CMD_SUCCESS) {
tlv->protocol = uap_le16_to_cpu(tlv->protocol);
memcpy(proto, &tlv->protocol, sizeof(tlv->protocol));
} else {
ret = UAP_FAILURE;
}
}
if (buffer)
free(buffer);
return ret;
}
/**
* @brief Check cipher is valid or not
*
* @param pairwisecipher Pairwise cipher
* @param groupcipher Group cipher
* @param protocol Protocol
* @param enable_11n 11n enabled or not.
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_cipher_valid_with_11n(int pairwisecipher, int groupcipher,
int protocol, int enable_11n)
{
if ((pairwisecipher == CIPHER_NONE) && (groupcipher == CIPHER_NONE))
return UAP_SUCCESS;
if (pairwisecipher == CIPHER_TKIP) {
/* Ok to have TKIP in mixed mode */
if (enable_11n && protocol != PROTOCOL_WPA2_MIXED) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
if ((pairwisecipher == CIPHER_TKIP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) &&
(groupcipher == CIPHER_AES_CCMP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_BITMAP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
return UAP_FAILURE;
}
/**
* @brief Check cipher is valid or not based on proto
*
* @param pairwisecipher Pairwise cipher
* @param groupcipher Group cipher
* @param protocol Protocol
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_cipher_valid_with_proto(int pairwisecipher, int groupcipher, int protocol)
{
HTCap_t htcap;
if ((pairwisecipher == CIPHER_NONE) && (groupcipher == CIPHER_NONE))
return UAP_SUCCESS;
if (pairwisecipher == CIPHER_TKIP) {
/* Ok to have TKIP in mixed mode */
if (protocol != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS == get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
}
}
if ((pairwisecipher == CIPHER_TKIP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) &&
(groupcipher == CIPHER_AES_CCMP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_BITMAP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
return UAP_FAILURE;
}
/**
* @brief Check cipher is valid or not
*
* @param pairwisecipher Pairwise cipher
* @param groupcipher Group cipher
* @return UAP_SUCCESS or UAP_FAILURE
*/
int
is_cipher_valid(int pairwisecipher, int groupcipher)
{
HTCap_t htcap;
t_u16 proto = 0;
if ((pairwisecipher == CIPHER_NONE) && (groupcipher == CIPHER_NONE))
return UAP_SUCCESS;
if (pairwisecipher == CIPHER_TKIP) {
if (UAP_SUCCESS == get_sys_cfg_protocol(&proto)) {
/* Ok to have TKIP in mixed mode */
if (proto != PROTOCOL_WPA2_MIXED) {
memset(&htcap, 0, sizeof(htcap));
if (UAP_SUCCESS == get_sys_cfg_11n(&htcap)) {
if (htcap.supported_mcs_set[0]) {
printf("ERR: WPA/TKIP cannot be used when AP operates in 802.11n mode.\n");
return UAP_FAILURE;
}
}
}
}
}
if ((pairwisecipher == CIPHER_TKIP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) &&
(groupcipher == CIPHER_AES_CCMP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_AES_CCMP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
if ((pairwisecipher == CIPHER_BITMAP) && (groupcipher == CIPHER_TKIP))
return UAP_SUCCESS;
return UAP_FAILURE;
}
/**
* @brief The main function
*
* @param argc Number of arguments
* @param argv Pointer to the arguments
* @return 0 or 1
*/
int
main(int argc, char *argv[])
{
int opt, i;
int ret = 0;
memset(dev_name, 0, sizeof(dev_name));
strcpy(dev_name, DEFAULT_DEV_NAME);
/* Parse arguments */
while ((opt =
getopt_long(argc, argv, "+hi:d:v", ap_options, NULL)) != -1) {
switch (opt) {
case 'i':
if (strlen(optarg) < IFNAMSIZ) {
memset(dev_name, 0, sizeof(dev_name));
strncpy(dev_name, optarg, strlen(optarg));
}
printf("dev_name:%s\n", dev_name);
break;
case 'v':
printf("uaputl.exe - uAP utility ver %s\n",
UAP_VERSION);
exit(0);
case 'd':
debug_level = strtoul(optarg, NULL, 10);
#if DEBUG
uap_printf(MSG_DEBUG, "debug_level=%x\n", debug_level);
#endif
break;
case 'h':
default:
print_tool_usage();
exit(0);
}
}
argc -= optind;
argv += optind;
optind = 0;
if (argc < 1) {
print_tool_usage();
exit(1);
}
/* Process command */
for (i = 0; ap_command[i].cmd; i++) {
if (strncmp
(ap_command[i].cmd, argv[0], strlen(ap_command[i].cmd)))
continue;
if (strlen(ap_command[i].cmd) != strlen(argv[0]))
continue;
ret = ap_command[i].func(argc, argv);
break;
}
if (!ap_command[i].cmd) {
printf("ERR: %s is not supported\n", argv[0]);
exit(1);
}
if (ret == UAP_FAILURE)
return -1;
else
return 0;
}