/*- * Public platform independent Near Field Communication (NFC) library examples * * Copyright (C) 2009, Roel Verdult * Copyright (C) 2010, Romuald Conty, Romain Tartière * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1) Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2 )Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Note that this license only applies on the examples, NFC library itself is under LGPL * */ #include #include #include "nfc-utils.h" static const byte_t OddParity[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; byte_t oddparity (const byte_t bt) { return OddParity[bt]; } void oddparity_bytes_ts (const byte_t * pbtData, const size_t szLen, byte_t * pbtPar) { size_t szByteNr; // Calculate the parity bits for the command for (szByteNr = 0; szByteNr < szLen; szByteNr++) { pbtPar[szByteNr] = OddParity[pbtData[szByteNr]]; } } void print_hex (const byte_t * pbtData, const size_t szBytes) { size_t szPos; for (szPos = 0; szPos < szBytes; szPos++) { printf ("%02x ", pbtData[szPos]); } printf ("\n"); } void print_hex_bits (const byte_t * pbtData, const size_t szBits) { uint8_t uRemainder; size_t szPos; size_t szBytes = szBits / 8; for (szPos = 0; szPos < szBytes; szPos++) { printf ("%02x ", pbtData[szPos]); } uRemainder = szBits % 8; // Print the rest bits if (uRemainder != 0) { if (uRemainder < 5) printf ("%01x (%d bits)", pbtData[szBytes], uRemainder); else printf ("%02x (%d bits)", pbtData[szBytes], uRemainder); } printf ("\n"); } void print_hex_par (const byte_t * pbtData, const size_t szBits, const byte_t * pbtDataPar) { uint8_t uRemainder; size_t szPos; size_t szBytes = szBits / 8; for (szPos = 0; szPos < szBytes; szPos++) { printf ("%02x", pbtData[szPos]); if (OddParity[pbtData[szPos]] != pbtDataPar[szPos]) { printf ("! "); } else { printf (" "); } } uRemainder = szBits % 8; // Print the rest bits, these cannot have parity bit if (uRemainder != 0) { if (uRemainder < 5) printf ("%01x (%d bits)", pbtData[szBytes], uRemainder); else printf ("%02x (%d bits)", pbtData[szBytes], uRemainder); } printf ("\n"); } #define SAK_UID_NOT_COMPLETE 0x04 #define SAK_ISO14443_4_COMPLIANT 0x20 #define SAK_ISO18092_COMPLIANT 0x40 void print_nfc_iso14443a_info (const nfc_iso14443a_info_t nai, bool verbose) { printf (" ATQA (SENS_RES): "); print_hex (nai.abtAtqa, 2); if (verbose) { printf("* UID size: "); switch ((nai.abtAtqa[1] & 0xc0)>>6) { case 0: printf("single\n"); break; case 1: printf("double\n"); break; case 2: printf("triple\n"); break; case 3: printf("RFU\n"); break; } printf("* bit frame anticollision "); switch (nai.abtAtqa[1] & 0x1f) { case 0x01: case 0x02: case 0x04: case 0x08: case 0x10: printf("supported\n"); break; default: printf("not supported\n"); break; } } printf (" UID (NFCID%c): ", (nai.abtUid[0] == 0x08 ? '3' : '1')); print_hex (nai.abtUid, nai.szUidLen); if (verbose) { if (nai.abtUid[0] == 0x08) { printf ("* Random UID\n"); } } printf (" SAK (SEL_RES): "); print_hex (&nai.btSak, 1); if (verbose) { if (nai.btSak & SAK_UID_NOT_COMPLETE) { printf ("* Warning! Cascade bit set: UID not complete\n"); } if (nai.btSak & SAK_ISO14443_4_COMPLIANT) { printf ("* Compliant with ISO/IEC 14443-4\n"); } else { printf ("* Not compliant with ISO/IEC 14443-4\n"); } if (nai.btSak & SAK_ISO18092_COMPLIANT) { printf ("* Compliant with ISO/IEC 18092\n"); } else { printf ("* Not compliant with ISO/IEC 18092\n"); } } if (nai.szAtsLen) { printf (" ATS: "); print_hex (nai.abtAts, nai.szAtsLen); } if (nai.szAtsLen && verbose) { // Decode ATS according to ISO/IEC 14443-4 (5.2 Answer to select) const int iMaxFrameSizes[] = { 16, 24, 32, 40, 48, 64, 96, 128, 256 }; printf ("* Max Frame Size accepted by PICC: %d bytes\n", iMaxFrameSizes[nai.abtAts[0] & 0x0F]); size_t offset = 1; if (nai.abtAts[0] & 0x10) { // TA(1) present byte_t TA = nai.abtAts[offset]; offset++; printf ("* Bit Rate Capability:\n"); if (TA == 0) { printf (" * PICC supports only 106 kbits/s in both directions\n"); } if (TA & 1<<7) { printf (" * Same bitrate in both directions mandatory\n"); } if (TA & 1<<4) { printf (" * PICC to PCD, DS=2, bitrate 212 kbits/s supported\n"); } if (TA & 1<<5) { printf (" * PICC to PCD, DS=4, bitrate 424 kbits/s supported\n"); } if (TA & 1<<6) { printf (" * PICC to PCD, DS=8, bitrate 847 kbits/s supported\n"); } if (TA & 1<<0) { printf (" * PCD to PICC, DR=2, bitrate 212 kbits/s supported\n"); } if (TA & 1<<1) { printf (" * PCD to PICC, DR=4, bitrate 424 kbits/s supported\n"); } if (TA & 1<<2) { printf (" * PCD to PICC, DR=8, bitrate 847 kbits/s supported\n"); } if (TA & 1<<3) { printf (" * ERROR unknown value\n"); } } if (nai.abtAts[0] & 0x20) { // TB(1) present byte_t TB= nai.abtAts[offset]; offset++; printf ("* Frame Waiting Time: %.4g ms\n",256.0*16.0*(1<<((TB & 0xf0) >> 4))/13560.0); if ((TB & 0x0f) == 0) { printf ("* No Start-up Frame Guard Time required\n"); } else { printf ("* Start-up Frame Guard Time: %.4g ms\n",256.0*16.0*(1<<(TB & 0x0f))/13560.0); } } if (nai.abtAts[0] & 0x40) { // TC(1) present byte_t TC = nai.abtAts[offset]; offset++; if (TC & 0x1) { printf("* Node ADdress supported\n"); } else { printf("* Node ADdress not supported\n"); } if (TC & 0x2) { printf("* Card IDentifier supported\n"); } else { printf("* Card IDentifier not supported\n"); } } if (nai.szAtsLen > offset) { printf ("* Historical bytes Tk: " ); print_hex (nai.abtAts + offset, (nai.szAtsLen - offset)); byte_t CIB = nai.abtAts[offset]; offset++; if (CIB != 0x00 && CIB != 0x10 && (CIB & 0xf0) != 0x80) { printf(" * Proprietary format\n"); if (CIB == 0xc1) { printf(" * Tag byte: Mifare or virtual cards of various types\n"); byte_t L = nai.abtAts[offset]; offset++; if (L != (nai.szAtsLen - offset)) { printf(" * Warning: Type Identification Coding length (%i)", L); printf(" not matching Tk length (%zi)\n", (nai.szAtsLen - offset)); } if ((nai.szAtsLen - offset - 2) > 0) { // Omit 2 CRC bytes byte_t CTC = nai.abtAts[offset]; offset++; printf(" * Chip Type: "); switch (CTC & 0xf0) { case 0x00: printf("(Multiple) Virtual Cards\n"); break; case 0x10: printf("Mifare DESFire\n"); break; case 0x20: printf("Mifare Plus\n"); break; default: printf("RFU\n"); break; } printf(" * Memory size: "); switch (CTC & 0x0f) { case 0x00: printf("<1 kbyte\n"); break; case 0x01: printf("1 kbyte\n"); break; case 0x02: printf("2 kbyte\n"); break; case 0x03: printf("4 kbyte\n"); break; case 0x04: printf("8 kbyte\n"); break; case 0x0f: printf("Unspecified\n"); break; default: printf("RFU\n"); break; } } if ((nai.szAtsLen - offset) > 0) { // Omit 2 CRC bytes byte_t CVC = nai.abtAts[offset]; offset++; printf(" * Chip Status: "); switch (CVC & 0xf0) { case 0x00: printf("Engineering sample\n"); break; case 0x20: printf("Released\n"); break; default: printf("RFU\n"); break; } printf(" * Chip Generation: "); switch (CVC & 0x0f) { case 0x00: printf("Generation 1\n"); break; case 0x01: printf("Generation 2\n"); break; case 0x02: printf("Generation 3\n"); break; case 0x0f: printf("Unspecified\n"); break; default: printf("RFU\n"); break; } } if ((nai.szAtsLen - offset) > 0) { // Omit 2 CRC bytes byte_t VCS = nai.abtAts[offset]; offset++; printf(" * Specifics (Virtual Card Selection):\n"); if ((VCS & 0x09) == 0x00) { printf(" * Only VCSL supported\n"); } else if ((VCS & 0x09) == 0x01) { printf(" * VCS, VCSL and SVC supported\n"); } if ((VCS & 0x0e) == 0x00) { printf(" * SL1, SL2(?), SL3 supported\n"); } else if ((VCS & 0x0e) == 0x02) { printf(" * SL3 only card\n"); } else if ((VCS & 0x0f) == 0x0e) { printf(" * No VCS command supported\n"); } else if ((VCS & 0x0f) == 0x0f) { printf(" * Unspecified\n"); } else { printf(" * RFU\n"); } } } } else { if (CIB == 0x00) { printf(" * Tk after 0x00 consist of optional consecutive COMPACT-TLV data objects\n"); printf(" followed by a mandatory status indicator (the last three bytes, not in TLV)\n"); printf(" See ISO/IEC 7816-4 8.1.1.3 for more info\n"); } if (CIB == 0x10) { printf(" * DIR data reference: %02x\n", nai.abtAts[offset]); } if (CIB == 0x80) { if (nai.szAtsLen == offset) { printf(" * No COMPACT-TLV objects found, no status found\n"); } else { printf(" * Tk after 0x80 consist of optional consecutive COMPACT-TLV data objects;\n"); printf(" the last data object may carry a status indicator of one, two or three bytes.\n"); printf(" See ISO/IEC 7816-4 8.1.1.3 for more info\n"); } } } } } if (verbose) { printf("Fingerprinting based on ATQA & SAK values:\n"); uint32_t atqasak = 0; atqasak += (((uint32_t)nai.abtAtqa[0] & 0xff)<<16); atqasak += (((uint32_t)nai.abtAtqa[1] & 0xff)<<8); atqasak += ((uint32_t)nai.btSak & 0xff); bool found_possible_match = false; switch (atqasak) { case 0x000218: printf("* Mifare Classic 4K\n"); found_possible_match = true; break; case 0x000408: printf("* Mifare Classic 1K\n"); printf("* Mifare Plus (4-byte UID) 2K SL1\n"); found_possible_match = true; break; case 0x000409: printf("* Mifare MINI\n"); found_possible_match = true; break; case 0x000410: printf("* Mifare Plus (4-byte UID) 2K SL2\n"); found_possible_match = true; break; case 0x000411: printf("* Mifare Plus (4-byte UID) 4K SL2\n"); found_possible_match = true; break; case 0x000418: printf("* Mifare Plus (4-byte UID) 4K SL1\n"); found_possible_match = true; break; case 0x000420: printf("* Mifare Plus (4-byte UID) 2K/4K SL3\n"); found_possible_match = true; break; case 0x004400: printf("* Mifare Ultralight\n"); printf("* Mifare UltralightC\n"); found_possible_match = true; break; case 0x004208: case 0x004408: printf("* Mifare Plus (7-byte UID) 2K SL1\n"); found_possible_match = true; break; case 0x004218: case 0x004418: printf("* Mifare Plus (7-byte UID) 4K SL1\n"); found_possible_match = true; break; case 0x004210: case 0x004410: printf("* Mifare Plus (7-byte UID) 2K SL2\n"); found_possible_match = true; break; case 0x004211: case 0x004411: printf("* Mifare Plus (7-byte UID) 4K SL2\n"); found_possible_match = true; break; case 0x004220: case 0x004420: printf("* Mifare Plus (7-byte UID) 2K/4K SL3\n"); found_possible_match = true; break; case 0x034420: printf("* Mifare DESFire / Desfire EV1\n"); found_possible_match = true; break; } // Other matches not described in // AN MIFARE Type Identification Procedure // but seen in the field: switch (atqasak) { case 0x000488: printf("* Mifare Classic 1K Infineon\n"); found_possible_match = true; break; case 0x000298: printf("* Gemplus MPCOS\n"); found_possible_match = true; break; case 0x030428: printf("* JCOP31\n"); found_possible_match = true; break; case 0x004820: printf("* JCOP31 v2.4.1\n"); printf("* JCOP31 v2.2\n"); found_possible_match = true; break; case 0x000428: printf("* JCOP31 v2.3.1\n"); found_possible_match = true; break; case 0x000453: printf("* Fudan FM1208SH01\n"); found_possible_match = true; break; case 0x000820: printf("* Fudan FM1208\n"); found_possible_match = true; break; case 0x000238: printf("* MFC 4K emulated by Nokia 6212 Classic\n"); found_possible_match = true; break; case 0x000838: printf("* MFC 4K emulated by Nokia 6131 NFC\n"); found_possible_match = true; break; } if ((nai.abtAtqa[0] & 0xf0) == 0) { switch (nai.abtAtqa[1]) { case 0x02: printf("* SmartMX with Mifare 4K emulation\n"); found_possible_match = true; break; case 0x04: printf("* SmartMX with Mifare 1K emulation\n"); found_possible_match = true; break; case 0x48: printf("* SmartMX with 7-byte UID\n"); found_possible_match = true; break; } } if (! found_possible_match) { printf("* Unknown card, sorry\n"); } } } void print_nfc_felica_info (const nfc_felica_info_t nfi, bool verbose) { (void) verbose; printf (" ID (NFCID2): "); print_hex (nfi.abtId, 8); printf (" Parameter (PAD): "); print_hex (nfi.abtPad, 8); } void print_nfc_jewel_info (const nfc_jewel_info_t nji, bool verbose) { (void) verbose; printf (" ATQA (SENS_RES): "); print_hex (nji.btSensRes, 2); printf (" 4-LSB JEWELID: "); print_hex (nji.btId, 4); } #define PI_ISO14443_4_SUPPORTED 0x01 #define PI_NAD_SUPPORTED 0x01 #define PI_CID_SUPPORTED 0x02 void print_nfc_iso14443b_info (const nfc_iso14443b_info_t nbi, bool verbose) { const int iMaxFrameSizes[] = { 16, 24, 32, 40, 48, 64, 96, 128, 256 }; printf (" PUPI: "); print_hex (nbi.abtPupi, 4); printf (" Application Data: "); print_hex (nbi.abtApplicationData, 4); printf (" Protocol Info: "); print_hex (nbi.abtProtocolInfo, 3); if (verbose) { printf ("* Bit Rate Capability:\n"); if (nbi.abtProtocolInfo[0] == 0) { printf (" * PICC supports only 106 kbits/s in both directions\n"); } if (nbi.abtProtocolInfo[0] & 1<<7) { printf (" * Same bitrate in both directions mandatory\n"); } if (nbi.abtProtocolInfo[0] & 1<<4) { printf (" * PICC to PCD, 1etu=64/fc, bitrate 212 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<5) { printf (" * PICC to PCD, 1etu=32/fc, bitrate 424 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<6) { printf (" * PICC to PCD, 1etu=16/fc, bitrate 847 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<0) { printf (" * PCD to PICC, 1etu=64/fc, bitrate 212 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<1) { printf (" * PCD to PICC, 1etu=32/fc, bitrate 424 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<2) { printf (" * PCD to PICC, 1etu=16/fc, bitrate 847 kbits/s supported\n"); } if (nbi.abtProtocolInfo[0] & 1<<3) { printf (" * ERROR unknown value\n"); } if( (nbi.abtProtocolInfo[1] & 0xf0) <= 0x80 ) { printf ("* Maximum frame sizes: %d bytes\n", iMaxFrameSizes[((nbi.abtProtocolInfo[1] & 0xf0) >> 4)]); } if((nbi.abtProtocolInfo[1] & 0x0f) == PI_ISO14443_4_SUPPORTED) { printf ("* Protocol types supported: ISO/IEC 14443-4\n"); } printf ("* Frame Waiting Time: %.4g ms\n",256.0*16.0*(1<<((nbi.abtProtocolInfo[2] & 0xf0) >> 4))/13560.0); if((nbi.abtProtocolInfo[2] & (PI_NAD_SUPPORTED|PI_CID_SUPPORTED)) != 0) { printf ("* Frame options supported: "); if ((nbi.abtProtocolInfo[2] & PI_NAD_SUPPORTED) != 0) printf ("NAD "); if ((nbi.abtProtocolInfo[2] & PI_CID_SUPPORTED) != 0) printf ("CID "); printf("\n"); } } } void print_nfc_iso14443bi_info (const nfc_iso14443bi_info_t nii, bool verbose) { printf (" DIV: "); print_hex (nii.abtDIV, 4); if (verbose) { int version = (nii.btVerLog & 0x1e)>>1; printf (" Software Version: "); if (version == 15) { printf ("Undefined\n"); } else { printf ("%i\n", version); } if ((nii.btVerLog & 0x80) && (nii.btConfig & 0x80)){ printf (" Wait Enable: yes"); } } if ((nii.btVerLog & 0x80) && (nii.btConfig & 0x40)) { printf (" ATS: "); print_hex (nii.abtAtr, nii.szAtrLen); } } void print_nfc_iso14443b2sr_info (const nfc_iso14443b2sr_info_t nsi, bool verbose) { (void) verbose; printf (" UID: "); print_hex (nsi.abtUID, 8); } void print_nfc_iso14443b2ct_info (const nfc_iso14443b2ct_info_t nci, bool verbose) { (void) verbose; uint32_t uid; uid = (nci.abtUID[3] << 24) + (nci.abtUID[2] << 16) + (nci.abtUID[1] << 8) + nci.abtUID[0]; printf (" UID: "); print_hex (nci.abtUID, sizeof(nci.abtUID)); printf (" UID (decimal): %010u\n", uid); printf (" Product Code: %02X\n", nci.btProdCode); printf (" Fab Code: %02X\n", nci.btFabCode); } void print_nfc_dep_info (const nfc_dep_info_t ndi, bool verbose) { (void) verbose; printf (" NFCID3: "); print_hex (ndi.abtNFCID3, 10); printf (" BS: %02x\n", ndi.btBS); printf (" BR: %02x\n", ndi.btBR); printf (" TO: %02x\n", ndi.btTO); printf (" PP: %02x\n", ndi.btPP); if (ndi.szGB) { printf ("General Bytes: "); print_hex (ndi.abtGB, ndi.szGB); } } /** * @brief Tries to parse arguments to find device descriptions. * @return Returns the list of found device descriptions. */ nfc_device_desc_t * parse_args (int argc, const char *argv[], size_t * szFound, bool * verbose) { nfc_device_desc_t *pndd = 0; int arg; *szFound = 0; // Get commandline options for (arg = 1; arg < argc; arg++) { if (0 == strcmp (argv[arg], "--device")) { // FIXME: this device selection by command line options is terrible & does not support USB/PCSC drivers if (argc > arg + 1) { char buffer[256]; pndd = malloc (sizeof (nfc_device_desc_t)); strncpy (buffer, argv[++arg], 256); // Driver. pndd->pcDriver = (char *) malloc (256); strcpy (pndd->pcDriver, strtok (buffer, ":")); // Port. strcpy (pndd->acPort, strtok (NULL, ":")); // Speed. sscanf (strtok (NULL, ":"), "%u", &pndd->uiSpeed); *szFound = 1; } else { errx (1, "usage: %s [--device driver:port:speed]", argv[0]); } } if ((0 == strcmp (argv[arg], "-v")) || (0 == strcmp (argv[arg], "--verbose"))) { *verbose = true; } } return pndd; } const char * str_nfc_baud_rate (const nfc_baud_rate_t nbr) { switch(nbr) { case NBR_UNDEFINED: return "undefined baud rate"; break; case NBR_106: return "106 kbps"; break; case NBR_212: return "212 kbps"; break; case NBR_424: return "424 kbps"; break; case NBR_847: return "847 kbps"; break; } return ""; } void print_nfc_target (const nfc_target_t nt, bool verbose) { switch(nt.nm.nmt) { case NMT_ISO14443A: printf ("ISO/IEC 14443A (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_iso14443a_info (nt.nti.nai, verbose); break; case NMT_JEWEL: printf ("Innovision Jewel (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_jewel_info (nt.nti.nji, verbose); break; case NMT_FELICA: printf ("FeliCa (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_felica_info (nt.nti.nfi, verbose); break; case NMT_ISO14443B: printf ("ISO/IEC 14443-4B (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_iso14443b_info (nt.nti.nbi, verbose); break; case NMT_ISO14443BI: printf ("ISO/IEC 14443-4B' (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_iso14443bi_info (nt.nti.nii, verbose); break; case NMT_ISO14443B2SR: printf ("ISO/IEC 14443-2B ST SRx (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_iso14443b2sr_info (nt.nti.nsi, verbose); break; case NMT_ISO14443B2CT: printf ("ISO/IEC 14443-2B ASK CTx (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_iso14443b2ct_info (nt.nti.nci, verbose); break; case NMT_DEP: printf ("D.E.P. (%s) target:\n", str_nfc_baud_rate(nt.nm.nbr)); print_nfc_dep_info (nt.nti.ndi, verbose); break; } }