Format source code with "make style"

This commit is contained in:
Romuald Conty 2013-01-20 15:36:59 +01:00
parent 2596aeac80
commit 6048309a13
5 changed files with 1221 additions and 1209 deletions

View file

@ -24,50 +24,50 @@
static uint8_t filterlut[1 << 20];
static void __attribute__((constructor)) fill_lut(void)
{
uint32_t i;
for(i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
uint32_t i;
for (i = 0; i < 1 << 20; ++i)
filterlut[i] = filter(i);
}
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
static void quicksort(uint32_t* const start, uint32_t* const stop)
static void quicksort(uint32_t *const start, uint32_t *const stop)
{
uint32_t *it = start + 1, *rit = stop;
uint32_t *it = start + 1, *rit = stop;
if(it > rit)
return;
if (it > rit)
return;
while(it < rit)
if(*it <= *start)
++it;
else if(*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
while (it < rit)
if (*it <= *start)
++it;
else if (*rit > *start)
--rit;
else
*it ^= (*it ^= *rit, *rit ^= *it);
if(*rit >= *start)
--rit;
if(rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
if (*rit >= *start)
--rit;
if (rit != start)
*rit ^= (*rit ^= *start, *start ^= *rit);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
static inline uint32_t*
static inline uint32_t *
binsearch(uint32_t *start, uint32_t *stop)
{
uint32_t mid, val = *stop & 0xff000000;
while(start != stop)
if(start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
uint32_t mid, val = *stop & 0xff000000;
while (start != stop)
if (start[mid = (stop - start) >> 1] > val)
stop = &start[mid];
else
start += mid + 1;
return start;
return start;
}
/** update_contribution
@ -76,11 +76,11 @@ binsearch(uint32_t *start, uint32_t *stop)
static inline void
update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{
uint32_t p = *item >> 25;
uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff);
}
/** extend_table
@ -89,21 +89,21 @@ update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
in <<= 24;
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if (filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if (filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
@ -111,201 +111,202 @@ extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
for (*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if (filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
} else if (filter(*tbl) == bit) {
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
static struct Crypto1State *
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
{
uint32_t *o, *e, i;
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in) {
uint32_t *o, *e, i;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
if (rem == -1) {
for (e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for (o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
return sl;
for (i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if (o_head > o_tail)
return sl;
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if(e_head > e_tail)
return sl;
}
extend_table(e_head, &e_tail, (eks >>= 1) & 1,
LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);
if (e_head > e_tail)
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
while (o_tail >= o_head && e_tail >= e_head)
if (((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
} else if (*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
return sl;
return sl;
}
/** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream
* additionally you can use the in parameter to specify the value
* that was fed into the lfsr at the time the keystream was generated
*/
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in) {
struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
for (i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for (i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
goto out;
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if (!odd_tail-- || !even_tail-- || !statelist)
goto out;
statelist->odd = statelist->even = 0;
statelist->odd = statelist->even = 0;
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
if(filter(i) == (eks & 1))
*++even_tail = i;
}
for (i = 1 << 20; i >= 0; --i) {
if (filter(i) == (oks & 1))
*++odd_tail = i;
if (filter(i) == (eks & 1))
*++even_tail = i;
}
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
for (i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
out:
free(odd_head);
free(even_head);
return statelist;
free(odd_head);
free(even_head);
return statelist;
}
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA
};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020};
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020
};
static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C
};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0
};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states
* Variation mentioned in the paper. Somewhat optimized version
*/
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3) {
struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16];
int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl)
return 0;
sl->odd = sl->even = 0;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if (!sl)
return 0;
sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for (i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BIT(ks2, i ^ 24);
oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for (i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BIT(ks2, i ^ 24);
eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);
}
for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
for (i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0])
continue;
*(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
*(tail = table) = i;
for (j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]);
if(tail < table)
continue;
if (tail < table)
continue;
for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for (j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]);
for (j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j])
goto continue2;
}
for (; tail >= table; --tail) {
for (j = 0; j < 3; ++j) {
*tail = *tail << 1;
*tail |= parity((i & C1[j]) ^(*tail & C2[j]));
if (filter(*tail) != oks[29 + j])
goto continue2;
}
for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
for (j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]);
win ^= low;
for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j])
goto continue2;
}
win ^= low;
for (j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if (filter(win) != eks[j])
goto continue2;
}
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:;
}
}
return statelist;
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win;
++sl;
sl->odd = sl->even = 0;
continue2:
;
}
}
return statelist;
}
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb);
@ -318,42 +319,42 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
*/
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{
int out;
uint8_t ret;
int out;
uint8_t ret;
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
s->odd &= 0xffffff;
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd;
out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23;
return ret;
s->even |= parity(out) << 23;
return ret;
}
/** lfsr_rollback_byte
* Rollback the shift register in order to get previous states
*/
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint8_t ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
int i;
uint8_t ret = 0;
for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
return ret;
}
/** lfsr_rollback_word
* Rollback the shift register in order to get previous states
*/
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
int i;
uint32_t ret = 0;
for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
return ret;
}
/** nonce_distance
@ -362,23 +363,24 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to)
{
uint16_t x, i;
if(!dist) {
dist = malloc(2 << 16);
if(!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
uint16_t x, i;
if (!dist) {
dist = malloc(2 << 16);
if (!dist)
return -1;
for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
}
}
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
}
static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}
};
/** lfsr_prefix_ks
@ -392,64 +394,63 @@ static uint32_t fastfwd[2][8] = {
*/
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{
uint32_t c, entry, *candidates = malloc(4 << 21);
int i, size = (1 << 21) - 1;
uint32_t c, entry, *candidates = malloc(4 << 21);
int i, size = (1 << 21) - 1;
if(!candidates)
return 0;
if (!candidates)
return 0;
for(i = 0; i <= size; ++i)
candidates[i] = i;
for (i = 0; i <= size; ++i)
candidates[i] = i;
for(c = 0; c < 8; ++c)
for(i = 0;i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
for (c = 0; c < 8; ++c)
for (i = 0; i <= size; ++i) {
entry = candidates[i] ^ fastfwd[isodd][c];
if(filter(entry >> 1) != BIT(ks[c], isodd) ||
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
}
if (filter(entry >> 1) != BIT(ks[c], isodd) ||
filter(entry) != BIT(ks[c], isodd + 2))
candidates[i--] = candidates[size--];
}
candidates[size + 1] = -1;
candidates[size + 1] = -1;
return candidates;
return candidates;
}
/** check_pfx_parity
* helper function which eliminates possible secret states using parity bits
*/
static struct Crypto1State*
static struct Crypto1State *
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
uint32_t odd, uint32_t even, struct Crypto1State* sl)
{
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
uint32_t odd, uint32_t even, struct Crypto1State *sl) {
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
for (c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp;
nr = ks1 ^(prefix | c << 5);
rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
}
return sl + good;
}
return sl + good;
}
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
struct Crypto1State *lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
/** lfsr_common_prefix
* Implentation of the common prefix attack.
@ -460,35 +461,34 @@ struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8]
* It returns a zero terminated list of possible cipher states after the
* tag nonce was fed in
*/
struct Crypto1State*
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
struct Crypto1State *
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) {
struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
s = statelist = malloc((sizeof *statelist) << 20);
if (!s || !odd || !even) {
free(odd);
free(even);
free(statelist);
return 0;
}
for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
for (o = odd; *o + 1; ++o)
for (e = even; *e + 1; ++e)
for (top = 0; top < 64; ++top) {
*o += 1 << 21;
*e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
}
s->odd = s->even = 0;
s->odd = s->even = 0;
free(odd);
free(even);
free(odd);
free(even);
return statelist;
return statelist;
}

View file

@ -24,65 +24,65 @@
extern "C" {
#endif
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State* crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State*);
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State {uint32_t odd, even;};
struct Crypto1State *crypto1_create(uint64_t);
void crypto1_destroy(struct Crypto1State *);
void crypto1_get_lfsr(struct Crypto1State *, uint64_t *);
uint8_t crypto1_bit(struct Crypto1State *, uint8_t, int);
uint8_t crypto1_byte(struct Crypto1State *, uint8_t, int);
uint32_t crypto1_word(struct Crypto1State *, uint32_t, int);
uint32_t prng_successor(uint32_t x, uint32_t n);
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
struct Crypto1State *lfsr_recovery32(uint32_t ks2, uint32_t in);
struct Crypto1State *lfsr_recovery64(uint32_t ks2, uint32_t ks3);
void lfsr_rollback(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
void lfsr_rollback(struct Crypto1State *s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to);
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
uint32_t __n = 0,__M = 0, N = 0;\
int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\
else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else
#define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804)
#define BIT(x, n) ((x) >> (n) & 1)
#define BEBIT(x, n) BIT(x, (n) ^ 24)
static inline int parity(uint32_t x)
{
static inline int parity(uint32_t x)
{
#if !defined __i386__ || !defined __GNUC__
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
x ^= x >> 16;
x ^= x >> 8;
x ^= x >> 4;
return BIT(0x6996, x & 0xf);
#else
asm( "movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x;
asm("movl %1, %%eax\n"
"mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n"
"xor %%ch, %%cl\n"
"setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax", "ecx");
return x;
#endif
}
static inline int filter(uint32_t const x)
{
uint32_t f;
}
static inline int filter(uint32_t const x)
{
uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f);
}
#ifdef __cplusplus
}
#endif

View file

@ -21,63 +21,62 @@
#include <stdlib.h>
#define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
struct Crypto1State * crypto1_create(uint64_t key)
{
struct Crypto1State *s = malloc(sizeof(*s));
int i;
struct Crypto1State *crypto1_create(uint64_t key) {
struct Crypto1State *s = malloc(sizeof(*s));
int i;
for(i = 47;s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
for (i = 47; s && i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7);
}
return s;
}
void crypto1_destroy(struct Crypto1State *state)
{
free(state);
free(state);
}
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{
int i;
for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
int i;
for (*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
}
}
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint32_t feedin;
uint8_t ret = filter(s->odd);
uint32_t feedin;
uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
feedin = ret & !!is_encrypted;
feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
return ret;
return ret;
}
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{
uint8_t i, ret = 0;
uint8_t i, ret = 0;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
return ret;
return ret;
}
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{
uint32_t i, ret = 0;
uint32_t i, ret = 0;
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
return ret;
return ret;
}
/* prng_successor
@ -85,9 +84,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
*/
uint32_t prng_successor(uint32_t x, uint32_t n)
{
SWAPENDIAN(x);
while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
SWAPENDIAN(x);
while (n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x);
return SWAPENDIAN(x);
}

1611
src/mfoc.c

File diff suppressed because it is too large Load diff

View file

@ -24,63 +24,63 @@
#define odd_parity(i) (( (i) ^ (i)>>1 ^ (i)>>2 ^ (i)>>3 ^ (i)>>4 ^ (i)>>5 ^ (i)>>6 ^ (i)>>7 ^ 1) & 0x01)
typedef struct {
uint8_t KeyA[6];
uint8_t KeyB[6];
bool foundKeyA;
bool foundKeyB;
uint8_t trailer; // Value of a trailer block
uint8_t KeyA[6];
uint8_t KeyB[6];
bool foundKeyA;
bool foundKeyB;
uint8_t trailer; // Value of a trailer block
} sector;
typedef struct {
uint32_t *distances;
uint32_t median;
uint32_t num_distances;
uint32_t tolerance;
uint8_t parity[3]; // used for 3 bits of parity information
uint32_t *distances;
uint32_t median;
uint32_t num_distances;
uint32_t tolerance;
uint8_t parity[3]; // used for 3 bits of parity information
} denonce; // Revealed information about nonce
typedef struct {
nfc_target nt;
sector * sectors; // Allocate later, we do not know the number of sectors yet
sector e_sector; // Exploit sector
uint8_t num_sectors;
uint8_t num_blocks;
uint32_t authuid;
bool b4K;
nfc_target nt;
sector *sectors; // Allocate later, we do not know the number of sectors yet
sector e_sector; // Exploit sector
uint8_t num_sectors;
uint8_t num_blocks;
uint32_t authuid;
bool b4K;
} mftag;
typedef struct {
uint64_t *possibleKeys;
uint32_t size;
uint64_t *possibleKeys;
uint32_t size;
} pKeys;
typedef struct {
uint64_t *brokenKeys;
int32_t size;
uint64_t *brokenKeys;
int32_t size;
} bKeys;
typedef struct {
nfc_device *pdi;
nfc_device *pdi;
} mfreader;
typedef struct {
uint64_t key;
int count;
uint64_t key;
int count;
} countKeys;
void usage(FILE * stream, int errno);
void usage(FILE *stream, int errno);
void mf_init(mfreader *r);
void mf_configure(nfc_device* pdi);
void mf_select_tag(nfc_device* pdi, nfc_target* pnt);
void mf_configure(nfc_device *pdi);
void mf_select_tag(nfc_device *pdi, nfc_target *pnt);
int trailer_block(uint32_t block);
int find_exploit_sector(mftag t);
void mf_anticollision(mftag t, mfreader r);
int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d, pKeys *pk, char mode, bool dumpKeysA);
uint32_t median(denonce d);
int compar_int(const void * a, const void * b);
int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t * parity);
int compar_special_int(const void * a, const void * b);
countKeys * uniqsort(uint64_t *possibleKeys, uint32_t size);
void num_to_bytes(uint64_t n, uint32_t len, uint8_t* dest);
long long unsigned int bytes_to_num(uint8_t* src, uint32_t len);
int compar_int(const void *a, const void *b);
int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity);
int compar_special_int(const void *a, const void *b);
countKeys *uniqsort(uint64_t *possibleKeys, uint32_t size);
void num_to_bytes(uint64_t n, uint32_t len, uint8_t *dest);
long long unsigned int bytes_to_num(uint8_t *src, uint32_t len);