libfprint/libfprint/img.c
2018-05-29 13:34:18 +02:00

622 lines
16 KiB
C

/*
* Image management functions for libfprint
* Copyright (C) 2007 Daniel Drake <dsd@gentoo.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <sys/types.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <glib.h>
#include "fp_internal.h"
#include "nbis/include/bozorth.h"
#include "nbis/include/lfs.h"
/**
* SECTION:img
* @title: Image operations
*
* libfprint offers several ways of retrieving images from imaging devices,
* one example being the fp_dev_img_capture() function. The functions
* documented below allow you to work with such images.
*
* # Image format # {#img_fmt}
* All images are represented as 8-bit greyscale data.
*
* # Image standardization # {#img_std}
* In some contexts, images you are provided through libfprint are raw images
* from the hardware. The orientation of these varies from device-to-device,
* as does the color scheme (black-on-white or white-on-black?). libfprint
* provides the fp_img_standardize() function to convert images into standard
* form, which is defined to be: finger flesh as black on white surroundings,
* natural upright orientation.
*/
struct fp_img *fpi_img_new(size_t length)
{
struct fp_img *img = g_malloc0(sizeof(*img) + length);
fp_dbg("length=%zd", length);
img->length = length;
return img;
}
struct fp_img *fpi_img_new_for_imgdev(struct fp_img_dev *imgdev)
{
struct fp_img_driver *imgdrv = fpi_driver_to_img_driver(imgdev->dev->drv);
int width = imgdrv->img_width;
int height = imgdrv->img_height;
struct fp_img *img = fpi_img_new(width * height);
img->width = width;
img->height = height;
return img;
}
gboolean fpi_img_is_sane(struct fp_img *img)
{
/* basic checks */
if (!img->length || !img->width || !img->height)
return FALSE;
/* buffer is big enough? */
if ((img->length * img->height) < img->length)
return FALSE;
return TRUE;
}
struct fp_img *fpi_img_resize(struct fp_img *img, size_t newsize)
{
return g_realloc(img, sizeof(*img) + newsize);
}
/**
* fp_img_free:
* @img: the image to destroy. If NULL, function simply returns.
*
* Frees an image. Must be called when you are finished working with an image.
*/
API_EXPORTED void fp_img_free(struct fp_img *img)
{
if (!img)
return;
if (img->minutiae)
free_minutiae(img->minutiae);
if (img->binarized)
free(img->binarized);
g_free(img);
}
/**
* fp_img_get_height:
* @img: an image
*
* Gets the pixel height of an image.
*
* Returns: the height of the image
*/
API_EXPORTED int fp_img_get_height(struct fp_img *img)
{
return img->height;
}
/**
* fp_img_get_width:
* @img: an image
*
* Gets the pixel width of an image.
*
* Returns: the width of the image
*/
API_EXPORTED int fp_img_get_width(struct fp_img *img)
{
return img->width;
}
/**
* fp_img_get_data:
* @img: an image
*
* Gets the greyscale data for an image. This data must not be modified or
* freed, and must not be used after fp_img_free() has been called.
*
* Returns: a pointer to libfprint's internal data for the image
*/
API_EXPORTED unsigned char *fp_img_get_data(struct fp_img *img)
{
return img->data;
}
/**
* fp_img_save_to_file:
* @img: the image to save
* @path: the path to save the image. Existing files will be overwritten.
*
* A quick convenience function to save an image to a file in
* [PGM format](http://netpbm.sourceforge.net/doc/pgm.html).
*
* Returns: 0 on success, non-zero on error.
*/
API_EXPORTED int fp_img_save_to_file(struct fp_img *img, char *path)
{
FILE *fd = fopen(path, "w");
size_t write_size = img->width * img->height;
int r;
if (!fd) {
fp_dbg("could not open '%s' for writing: %d", path, errno);
return -errno;
}
r = fprintf(fd, "P5 %d %d 255\n", img->width, img->height);
if (r < 0) {
fclose(fd);
fp_err("pgm header write failed, error %d", r);
return r;
}
r = fwrite(img->data, 1, write_size, fd);
if (r < write_size) {
fclose(fd);
fp_err("short write (%d)", r);
return -EIO;
}
fclose(fd);
fp_dbg("written to '%s'", path);
return 0;
}
static void vflip(struct fp_img *img)
{
int width = img->width;
int data_len = img->width * img->height;
unsigned char rowbuf[width];
int i;
for (i = 0; i < img->height / 2; i++) {
int offset = i * width;
int swap_offset = data_len - (width * (i + 1));
/* copy top row into buffer */
memcpy(rowbuf, img->data + offset, width);
/* copy lower row over upper row */
memcpy(img->data + offset, img->data + swap_offset, width);
/* copy buffer over lower row */
memcpy(img->data + swap_offset, rowbuf, width);
}
}
static void hflip(struct fp_img *img)
{
int width = img->width;
unsigned char rowbuf[width];
int i, j;
for (i = 0; i < img->height; i++) {
int offset = i * width;
memcpy(rowbuf, img->data + offset, width);
for (j = 0; j < width; j++)
img->data[offset + j] = rowbuf[width - j - 1];
}
}
static void invert_colors(struct fp_img *img)
{
int data_len = img->width * img->height;
int i;
for (i = 0; i < data_len; i++)
img->data[i] = 0xff - img->data[i];
}
/**
* fp_img_standardize:
* @img: the image to standardize
*
* [Standardizes](libfprint-Image-operations.html#img_std) an image by normalizing its orientation, colors,
* etc. It is safe to call this multiple times on an image, libfprint keeps
* track of the work it needs to do to make an image standard and will not
* perform these operations more than once for a given image.
*/
API_EXPORTED void fp_img_standardize(struct fp_img *img)
{
if (img->flags & FP_IMG_V_FLIPPED) {
vflip(img);
img->flags &= ~FP_IMG_V_FLIPPED;
}
if (img->flags & FP_IMG_H_FLIPPED) {
hflip(img);
img->flags &= ~FP_IMG_H_FLIPPED;
}
if (img->flags & FP_IMG_COLORS_INVERTED) {
invert_colors(img);
img->flags &= ~FP_IMG_COLORS_INVERTED;
}
}
/* Based on write_minutiae_XYTQ and bz_load */
static void minutiae_to_xyt(struct fp_minutiae *minutiae, int bwidth,
int bheight, unsigned char *buf)
{
int i;
struct fp_minutia *minutia;
struct minutiae_struct c[MAX_FILE_MINUTIAE];
struct xyt_struct *xyt = (struct xyt_struct *) buf;
/* FIXME: only considers first 150 minutiae (MAX_FILE_MINUTIAE) */
/* nist does weird stuff with 150 vs 1000 limits */
int nmin = min(minutiae->num, MAX_FILE_MINUTIAE);
for (i = 0; i < nmin; i++){
minutia = minutiae->list[i];
lfs2nist_minutia_XYT(&c[i].col[0], &c[i].col[1], &c[i].col[2],
minutia, bwidth, bheight);
c[i].col[3] = sround(minutia->reliability * 100.0);
if (c[i].col[2] > 180)
c[i].col[2] -= 360;
}
qsort((void *) &c, (size_t) nmin, sizeof(struct minutiae_struct),
sort_x_y);
for (i = 0; i < nmin; i++) {
xyt->xcol[i] = c[i].col[0];
xyt->ycol[i] = c[i].col[1];
xyt->thetacol[i] = c[i].col[2];
}
xyt->nrows = nmin;
}
static int fpi_img_detect_minutiae(struct fp_img *img)
{
struct fp_minutiae *minutiae;
int r;
int *direction_map, *low_contrast_map, *low_flow_map;
int *high_curve_map, *quality_map;
int map_w, map_h;
unsigned char *bdata;
int bw, bh, bd;
GTimer *timer;
if (img->flags & FP_IMG_STANDARDIZATION_FLAGS) {
fp_err("cant detect minutiae for non-standardized image");
return -EINVAL;
}
/* Remove perimeter points from partial image */
g_lfsparms_V2.remove_perimeter_pts = img->flags & FP_IMG_PARTIAL ? TRUE : FALSE;
/* 25.4 mm per inch */
timer = g_timer_new();
r = get_minutiae(&minutiae, &quality_map, &direction_map,
&low_contrast_map, &low_flow_map, &high_curve_map,
&map_w, &map_h, &bdata, &bw, &bh, &bd,
img->data, img->width, img->height, 8,
DEFAULT_PPI / (double)25.4, &g_lfsparms_V2);
g_timer_stop(timer);
fp_dbg("minutiae scan completed in %f secs", g_timer_elapsed(timer, NULL));
g_timer_destroy(timer);
if (r) {
fp_err("get minutiae failed, code %d", r);
return r;
}
fp_dbg("detected %d minutiae", minutiae->num);
img->minutiae = minutiae;
img->binarized = bdata;
free(quality_map);
free(direction_map);
free(low_contrast_map);
free(low_flow_map);
free(high_curve_map);
return minutiae->num;
}
int fpi_img_to_print_data(struct fp_img_dev *imgdev, struct fp_img *img,
struct fp_print_data **ret)
{
struct fp_print_data *print;
struct fp_print_data_item *item;
int r;
if (!img->minutiae) {
r = fpi_img_detect_minutiae(img);
if (r < 0)
return r;
if (!img->minutiae) {
fp_err("no minutiae after successful detection?");
return -ENOENT;
}
}
/* FIXME: space is wasted if we dont hit the max minutiae count. would
* be good to make this dynamic. */
print = fpi_print_data_new(imgdev->dev);
item = fpi_print_data_item_new(sizeof(struct xyt_struct));
print->type = PRINT_DATA_NBIS_MINUTIAE;
minutiae_to_xyt(img->minutiae, img->width, img->height, item->data);
print->prints = g_slist_prepend(print->prints, item);
/* FIXME: the print buffer at this point is endian-specific, and will
* only work when loaded onto machines with identical endianness. not good!
* data format should be platform-independent. */
*ret = print;
return 0;
}
int fpi_img_compare_print_data(struct fp_print_data *enrolled_print,
struct fp_print_data *new_print)
{
int score, max_score = 0, probe_len;
struct xyt_struct *pstruct = NULL;
struct xyt_struct *gstruct = NULL;
struct fp_print_data_item *data_item;
GSList *list_item;
if (enrolled_print->type != PRINT_DATA_NBIS_MINUTIAE ||
new_print->type != PRINT_DATA_NBIS_MINUTIAE) {
fp_err("invalid print format");
return -EINVAL;
}
if (g_slist_length(new_print->prints) != 1) {
fp_err("new_print contains more than one sample, is it enrolled print?");
return -EINVAL;
}
data_item = new_print->prints->data;
pstruct = (struct xyt_struct *)data_item->data;
probe_len = bozorth_probe_init(pstruct);
list_item = enrolled_print->prints;
do {
data_item = list_item->data;
gstruct = (struct xyt_struct *)data_item->data;
score = bozorth_to_gallery(probe_len, pstruct, gstruct);
fp_dbg("score %d", score);
max_score = max(score, max_score);
list_item = g_slist_next(list_item);
} while (list_item);
return max_score;
}
int fpi_img_compare_print_data_to_gallery(struct fp_print_data *print,
struct fp_print_data **gallery, int match_threshold, size_t *match_offset)
{
struct xyt_struct *pstruct;
struct xyt_struct *gstruct;
struct fp_print_data *gallery_print;
struct fp_print_data_item *data_item;
int probe_len;
size_t i = 0;
int r;
GSList *list_item;
if (g_slist_length(print->prints) != 1) {
fp_err("new_print contains more than one sample, is it enrolled print?");
return -EINVAL;
}
data_item = print->prints->data;
pstruct = (struct xyt_struct *)data_item->data;
probe_len = bozorth_probe_init(pstruct);
while ((gallery_print = gallery[i++])) {
list_item = gallery_print->prints;
do {
data_item = list_item->data;
gstruct = (struct xyt_struct *)data_item->data;
r = bozorth_to_gallery(probe_len, pstruct, gstruct);
if (r >= match_threshold) {
*match_offset = i - 1;
return FP_VERIFY_MATCH;
}
list_item = g_slist_next(list_item);
} while (list_item);
}
return FP_VERIFY_NO_MATCH;
}
/**
* fp_img_binarize:
* @img: a standardized image
*
* Get a binarized form of a standardized scanned image. This is where the
* fingerprint image has been "enhanced" and is a set of pure black ridges
* on a pure white background. Internally, image processing happens on top
* of the binarized image.
*
* The image must have been [standardized](libfprint-Image-operations.html#img_std)
* otherwise this function will fail.
*
* It is safe to binarize an image and free the original while continuing
* to use the binarized version.
*
* You cannot binarize an image twice.
*
* Returns: a new image representing the binarized form of the original, or
* %NULL on error. Must be freed with fp_img_free() after use.
*/
API_EXPORTED struct fp_img *fp_img_binarize(struct fp_img *img)
{
struct fp_img *ret;
int height = img->height;
int width = img->width;
int imgsize = height * width;
if (img->flags & FP_IMG_BINARIZED_FORM) {
fp_err("image already binarized");
return NULL;
}
if (!img->binarized) {
int r = fpi_img_detect_minutiae(img);
if (r < 0)
return NULL;
if (!img->binarized) {
fp_err("no minutiae after successful detection?");
return NULL;
}
}
ret = fpi_img_new(imgsize);
ret->flags |= FP_IMG_BINARIZED_FORM;
ret->width = width;
ret->height = height;
memcpy(ret->data, img->binarized, imgsize);
return ret;
}
/**
* fp_img_get_minutiae:
* @img: a standardized image
* @nr_minutiae: an output location to store minutiae list length
*
* Get a list of minutiae detected in an image. A minutia point is a feature
* detected on a fingerprint, typically where ridges end or split.
* libfprint's image processing code relies upon comparing sets of minutiae,
* so accurate placement of minutia points is critical for good imaging
* performance.
*
* The image must have been [standardized](libfprint-Image-operations.html#img_std)
* otherwise this function will fail.
*
* You cannot pass a binarized image to this function. Instead, pass the
* original image.
*
* Returns a list of pointers to minutiae, where the list is of length
* indicated in the nr_minutiae output parameter. The returned list is only
* valid while the parent image has not been freed, and the minutiae data
* must not be modified or freed.
*
* Returns: a list of minutiae points. Must not be modified or freed.
*/
API_EXPORTED struct fp_minutia **fp_img_get_minutiae(struct fp_img *img,
int *nr_minutiae)
{
if (img->flags & FP_IMG_BINARIZED_FORM) {
fp_err("image is binarized");
return NULL;
}
if (!img->minutiae) {
int r = fpi_img_detect_minutiae(img);
if (r < 0)
return NULL;
if (!img->minutiae) {
fp_err("no minutiae after successful detection?");
return NULL;
}
}
*nr_minutiae = img->minutiae->num;
return img->minutiae->list;
}
libusb_device_handle *
fpi_imgdev_get_usb_dev(struct fp_img_dev *dev)
{
return dev->udev;
}
void
fpi_imgdev_set_user_data(struct fp_img_dev *imgdev,
void *user_data)
{
imgdev->priv = user_data;
}
void *
fpi_imgdev_get_user_data(struct fp_img_dev *imgdev)
{
return imgdev->priv;
}
struct fp_dev *
fpi_imgdev_get_dev(struct fp_img_dev *imgdev)
{
return imgdev->dev;
}
enum fp_imgdev_enroll_state
fpi_imgdev_get_action_state(struct fp_img_dev *imgdev)
{
return imgdev->action_state;
}
enum fp_imgdev_action
fpi_imgdev_get_action(struct fp_img_dev *imgdev)
{
return imgdev->action;
}
int
fpi_imgdev_get_action_result(struct fp_img_dev *imgdev)
{
return imgdev->action_result;
}
void
fpi_imgdev_set_action_result(struct fp_img_dev *imgdev,
int action_result)
{
imgdev->action_result = action_result;
}
/* Calculate squared standand deviation */
int fpi_std_sq_dev(const unsigned char *buf, int size)
{
int res = 0, mean = 0, i;
if (size > (INT_MAX / 65536)) {
fp_err("%s: we might get an overflow!", __func__);
return -EOVERFLOW;
}
for (i = 0; i < size; i++)
mean += buf[i];
mean /= size;
for (i = 0; i < size; i++) {
int dev = (int)buf[i] - mean;
res += dev*dev;
}
return res / size;
}
/* Calculate normalized mean square difference of two lines */
int fpi_mean_sq_diff_norm(unsigned char *buf1, unsigned char *buf2, int size)
{
int res = 0, i;
for (i = 0; i < size; i++) {
int dev = (int)buf1[i] - (int)buf2[i];
res += dev * dev;
}
return res / size;
}