libfprint/libfprint/fpi-spi-transfer.c
Benjamin Berg b4f564cafc spi-transfer: Keep CS asserted during long transfers
Long transfers need to be split into multiple chunks because of
limitations by the spidev kernel driver. If this happens, we need to
make sure that the CS line remains high between the different chunks.

Add code to split the transfer into chunks and ask the driver to not
deassert CS after the transfer. Technically, this is only an
optimization as concurrent access to another device might still cause
deselection. However, this should mean that devices work without having
to change the spidev module parameter.

Use the feature in the hope that it will work. However, print a message
(not a warning), to help with debugging in case someone does run into
issues because of this.
2021-06-21 22:24:58 +00:00

519 lines
15 KiB
C

/*
* FPrint SPI transfer handling
* Copyright (C) 2019-2020 Benjamin Berg <bberg@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "fpi-spi-transfer.h"
#include <sys/ioctl.h>
#include <linux/spi/spidev.h>
#include <errno.h>
/* spidev can only handle the specified block size, which defaults to 4096. */
#define SPIDEV_BLOCK_SIZE_PARAM "/sys/module/spidev/parameters/bufsiz"
#define SPIDEV_BLOCK_SIZE_FALLBACK 4096
static gsize block_size = 0;
/**
* SECTION:fpi-spi-transfer
* @title: SPI transfer helpers
* @short_description: Helpers to ease SPI transfers
*
* #FpiSpiTransfer is a structure to simplify the SPI transfer handling
* for the linux spidev device. The main goal are to ease memory management
* and provide a usable asynchronous API to libfprint drivers.
*
* Currently only transfers with a write and subsequent read are supported.
*
* Drivers should always use this API rather than calling read/write/ioctl on
* the spidev device.
*
* Setting G_MESSAGES_DEBUG and FP_DEBUG_TRANSFER will result in the message
* content to be dumped.
*/
G_DEFINE_BOXED_TYPE (FpiSpiTransfer, fpi_spi_transfer, fpi_spi_transfer_ref, fpi_spi_transfer_unref)
static void
dump_buffer (guchar *buf, gssize dump_len)
{
g_autoptr(GString) line = NULL;
line = g_string_new ("");
/* Dump the buffer. */
for (gssize i = 0; i < dump_len; i++)
{
g_string_append_printf (line, "%02x ", buf[i]);
if ((i + 1) % 16 == 0)
{
g_debug ("%s", line->str);
g_string_set_size (line, 0);
}
}
if (line->len)
g_debug ("%s", line->str);
}
static void
log_transfer (FpiSpiTransfer *transfer, gboolean submit, GError *error)
{
if (g_getenv ("FP_DEBUG_TRANSFER"))
{
if (submit)
{
g_debug ("Transfer %p submitted, write length %zd, read length %zd",
transfer,
transfer->length_wr,
transfer->length_rd);
if (transfer->buffer_wr)
dump_buffer (transfer->buffer_wr, transfer->length_wr);
}
else
{
g_autofree gchar *error_str = NULL;
if (error)
error_str = g_strdup_printf ("with error (%s)", error->message);
else
error_str = g_strdup ("successfully");
g_debug ("Transfer %p completed %s, write length %zd, read length %zd",
transfer,
error_str,
transfer->length_wr,
transfer->length_rd);
if (transfer->buffer_rd)
dump_buffer (transfer->buffer_rd, transfer->length_rd);
}
}
}
/**
* fpi_spi_transfer_new:
* @device: The #FpDevice the transfer is for
* @spidev_fd: The file descriptor for the spidev device
*
* Creates a new #FpiSpiTransfer.
*
* Returns: (transfer full): A newly created #FpiSpiTransfer
*/
FpiSpiTransfer *
fpi_spi_transfer_new (FpDevice * device, int spidev_fd)
{
FpiSpiTransfer *self;
g_assert (FP_IS_DEVICE (device));
if (G_UNLIKELY (block_size == 0))
{
g_autoptr(GError) error = NULL;
g_autofree char *contents = NULL;
block_size = SPIDEV_BLOCK_SIZE_FALLBACK;
if (g_file_get_contents (SPIDEV_BLOCK_SIZE_PARAM, &contents, NULL, &error))
{
block_size = MIN (g_ascii_strtoull (contents, NULL, 0), G_MAXUINT16);
if (block_size == 0)
{
block_size = SPIDEV_BLOCK_SIZE_FALLBACK;
g_warning ("spidev blocksize could not be decoded, using %" G_GSIZE_FORMAT, block_size);
}
}
else
{
g_message ("Failed to read spidev block size, using %" G_GSIZE_FORMAT, block_size);
}
}
self = g_slice_new0 (FpiSpiTransfer);
self->ref_count = 1;
/* Purely to enhance the debug log output. */
self->length_wr = -1;
self->length_rd = -1;
self->device = device;
self->spidev_fd = spidev_fd;
return self;
}
static void
fpi_spi_transfer_free (FpiSpiTransfer *self)
{
g_assert (self);
g_assert_cmpint (self->ref_count, ==, 0);
if (self->free_buffer_wr && self->buffer_wr)
self->free_buffer_wr (self->buffer_wr);
if (self->free_buffer_rd && self->buffer_rd)
self->free_buffer_rd (self->buffer_rd);
self->buffer_wr = NULL;
self->buffer_rd = NULL;
g_slice_free (FpiSpiTransfer, self);
}
/**
* fpi_spi_transfer_ref:
* @self: A #FpiSpiTransfer
*
* Increments the reference count of @self by one.
*
* Returns: (transfer full): @self
*/
FpiSpiTransfer *
fpi_spi_transfer_ref (FpiSpiTransfer *self)
{
g_return_val_if_fail (self, NULL);
g_return_val_if_fail (self->ref_count, NULL);
g_atomic_int_inc (&self->ref_count);
return self;
}
/**
* fpi_spi_transfer_unref:
* @self: A #FpiSpiTransfer
*
* Decrements the reference count of @self by one, freeing the structure when
* the reference count reaches zero.
*/
void
fpi_spi_transfer_unref (FpiSpiTransfer *self)
{
g_return_if_fail (self);
g_return_if_fail (self->ref_count);
if (g_atomic_int_dec_and_test (&self->ref_count))
fpi_spi_transfer_free (self);
}
/**
* fpi_spi_transfer_write:
* @transfer: The #FpiSpiTransfer
* @length: The buffer size to allocate
*
* Prepare the write part of an SPI transfer allocating a new buffer
* internally that will be free'ed automatically.
*/
void
fpi_spi_transfer_write (FpiSpiTransfer *transfer,
gsize length)
{
fpi_spi_transfer_write_full (transfer,
g_malloc0 (length),
length,
g_free);
}
/**
* fpi_spi_transfer_write_full:
* @transfer: The #FpiSpiTransfer
* @buffer: The data to write.
* @length: The size of @buffer
* @free_func: (destroy buffer): Destroy notify for @buffer
*
* Prepare the write part of an SPI transfer.
*/
void
fpi_spi_transfer_write_full (FpiSpiTransfer *transfer,
guint8 *buffer,
gsize length,
GDestroyNotify free_func)
{
g_assert (buffer != NULL);
g_return_if_fail (transfer);
/* Write is always before read, so ensure both are NULL. */
g_return_if_fail (transfer->buffer_wr == NULL);
g_return_if_fail (transfer->buffer_rd == NULL);
transfer->buffer_wr = buffer;
transfer->length_wr = length;
transfer->free_buffer_wr = free_func;
}
/**
* fpi_spi_transfer_read:
* @transfer: The #FpiSpiTransfer
* @length: The buffer size to allocate
*
* Prepare the read part of an SPI transfer allocating a new buffer
* internally that will be free'ed automatically.
*/
void
fpi_spi_transfer_read (FpiSpiTransfer *transfer,
gsize length)
{
fpi_spi_transfer_read_full (transfer,
g_malloc0 (length),
length,
g_free);
}
/**
* fpi_spi_transfer_read_full:
* @transfer: The #FpiSpiTransfer
* @buffer: Buffer to read data into.
* @length: The size of @buffer
* @free_func: (destroy buffer): Destroy notify for @buffer
*
* Prepare the read part of an SPI transfer.
*/
void
fpi_spi_transfer_read_full (FpiSpiTransfer *transfer,
guint8 *buffer,
gsize length,
GDestroyNotify free_func)
{
g_assert (buffer != NULL);
g_return_if_fail (transfer);
g_return_if_fail (transfer->buffer_rd == NULL);
transfer->buffer_rd = buffer;
transfer->length_rd = length;
transfer->free_buffer_rd = free_func;
}
static void
transfer_finish_cb (GObject *source_object, GAsyncResult *res, gpointer user_data)
{
GTask *task = G_TASK (res);
FpiSpiTransfer *transfer = g_task_get_task_data (task);
GError *error = NULL;
FpiSpiTransferCallback callback;
g_task_propagate_boolean (task, &error);
log_transfer (transfer, FALSE, error);
callback = transfer->callback;
transfer->callback = NULL;
callback (transfer, transfer->device, transfer->user_data, error);
}
static int
transfer_chunk (FpiSpiTransfer *transfer, gsize full_length, gsize *transferred)
{
struct spi_ioc_transfer xfer[2] = { 0 };
gsize skip = *transferred;
gsize len = 0;
int transfers = 0;
int status;
if (transfer->buffer_wr)
{
if (skip < transfer->length_wr && len < block_size)
{
xfer[transfers].tx_buf = (guint64) transfer->buffer_wr + skip;
xfer[transfers].len = MIN (block_size, transfer->length_wr - skip);
len += xfer[transfers].len;
skip += xfer[transfers].len;
transfers += 1;
}
/* How much we need to skip in the next transfer. */
skip -= transfer->length_wr;
}
if (transfer->buffer_rd)
{
if (skip < transfer->length_rd && len < block_size)
{
xfer[transfers].rx_buf = (guint64) transfer->buffer_rd + skip;
xfer[transfers].len = MIN (block_size, transfer->length_rd - skip);
len += xfer[transfers].len;
/* skip += xfer[transfers].len; */
transfers += 1;
}
/* How much we need to skip in the next transfer. */
/* skip -= transfer->length_rd; */
}
g_assert (transfers > 0);
/* We have not transferred everything; ask driver to not deselect the chip.
* Unfortunately, this is inherently racy in case there are further devices
* on the same bus. In practice, it is hopefully unlikely to be an issue,
* but print a message once to help with debugging.
*/
if (full_length < *transferred + len)
{
static gboolean warned = FALSE;
if (!warned)
{
g_message ("Split SPI transfer. In case of issues, try increasing the spidev buffer size.");
warned = TRUE;
}
xfer[transfers - 1].cs_change = TRUE;
}
/* This ioctl cannot be interrupted. */
status = ioctl (transfer->spidev_fd, SPI_IOC_MESSAGE (transfers), xfer);
if (status >= 0)
*transferred += len;
return status;
}
static void
transfer_thread_func (GTask *task,
gpointer source_object,
gpointer task_data,
GCancellable *cancellable)
{
FpiSpiTransfer *transfer = (FpiSpiTransfer *) task_data;
gsize full_length;
gsize transferred = 0;
int status = 0;
if (transfer->buffer_wr == NULL && transfer->buffer_rd == NULL)
{
g_task_return_new_error (task,
G_IO_ERROR,
G_IO_ERROR_INVALID_ARGUMENT,
"Transfer with neither write or read!");
return;
}
full_length = 0;
if (transfer->buffer_wr)
full_length += transfer->length_wr;
if (transfer->buffer_rd)
full_length += transfer->length_rd;
while (transferred < full_length && status >= 0)
status = transfer_chunk (transfer, full_length, &transferred);
if (status < 0)
{
g_task_return_new_error (task,
G_IO_ERROR,
g_io_error_from_errno (errno),
"Error invoking ioctl for SPI transfer (%d)",
errno);
}
else
{
g_task_return_boolean (task, TRUE);
}
}
/**
* fpi_spi_transfer_submit:
* @transfer: (transfer full): The transfer to submit, must have been filled.
* @cancellable: Cancellable to use, e.g. fpi_device_get_cancellable()
* @callback: Callback on completion or error
* @user_data: Data to pass to callback
*
* Submit an SPI transfer with a specific timeout and callback functions.
*
* The underlying transfer cannot be cancelled. The current implementation
* will only call @callback after the transfer has been completed.
*
* Note that #FpiSpiTransfer will be stolen when this function is called.
* So that all associated data will be free'ed automatically, after the
* callback ran unless fpi_usb_transfer_ref() is explicitly called.
*/
void
fpi_spi_transfer_submit (FpiSpiTransfer *transfer,
GCancellable *cancellable,
FpiSpiTransferCallback callback,
gpointer user_data)
{
g_autoptr(GTask) task = NULL;
g_return_if_fail (transfer);
g_return_if_fail (callback);
/* Recycling is allowed, but not two at the same time. */
g_return_if_fail (transfer->callback == NULL);
transfer->callback = callback;
transfer->user_data = user_data;
log_transfer (transfer, TRUE, NULL);
task = g_task_new (transfer->device,
cancellable,
transfer_finish_cb,
NULL);
g_task_set_task_data (task,
g_steal_pointer (&transfer),
(GDestroyNotify) fpi_spi_transfer_unref);
g_task_run_in_thread (task, transfer_thread_func);
}
/**
* fpi_spi_transfer_submit_sync:
* @transfer: The transfer to submit, must have been filled.
* @error: Location to store #GError to
*
* Synchronously submit an SPI transfer. Use of this function is discouraged
* as it will block all other operations in the application.
*
* Note that you still need to fpi_spi_transfer_unref() the
* #FpiSpiTransfer afterwards.
*
* Returns: #TRUE on success, otherwise #FALSE and @error will be set
*/
gboolean
fpi_spi_transfer_submit_sync (FpiSpiTransfer *transfer,
GError **error)
{
g_autoptr(GTask) task = NULL;
GError *err = NULL;
gboolean res;
g_return_val_if_fail (transfer, FALSE);
/* Recycling is allowed, but not two at the same time. */
g_return_val_if_fail (transfer->callback == NULL, FALSE);
log_transfer (transfer, TRUE, NULL);
task = g_task_new (transfer->device,
NULL,
NULL,
NULL);
g_task_set_task_data (task,
fpi_spi_transfer_ref (transfer),
(GDestroyNotify) fpi_spi_transfer_unref);
g_task_run_in_thread_sync (task, transfer_thread_func);
res = g_task_propagate_boolean (task, &err);
log_transfer (transfer, FALSE, err);
g_propagate_error (error, err);
return res;
}