libfprint/libfprint/drivers/upekts.c
Bastien Nocera 5c0bc90677 lib: Add new bus types for drivers
Add a way for drivers to declare they support a bus type other than USB.
We have declarations for SPI and virtual drivers, though there's no
device discovery implemented yet.

https://bugs.freedesktop.org/show_bug.cgi?id=106279

Patch modified from the original by Benjamin Berg <bberg@redhat.com>.
The drivers updates were mainly done using the following spatch:

@drv1@
identifier driver_name;
identifier id_table_var;
@@
struct fp_driver driver_name = {
	...,
-	.id_table = id_table_var,
+	.bus = BUS_TYPE_USB,
+	.id_table.usb = id_table_var,
	...
};
@imgdrv1@
identifier driver_name;
identifier id_table_var;
@@
struct fp_img_driver driver_name = {
	...,
	.driver = {
		...,
-		.id_table = id_table_var,
+		.bus = BUS_TYPE_USB,
+		.id_table.usb = id_table_var,
		...
	},
	...,
};
@imgdrv2@
identifier driver_name;
identifier discover_func;
@@
struct fp_img_driver driver_name = {
	...,
	.driver = {
		...,
-		.discover = discover_func,
+		.usb_discover = discover_func,
		...
	},
	...
};
@idtable1@
identifier drv;
expression x;
@@
	struct fp_driver *drv;
	<...
-	drv->id_table[x]
+	drv->id_table.usb[x]
	...>
@idtable2@
identifier drv;
identifier func;
expression x;
@@
func (..., struct fp_driver *drv, ...)
{
	<...
-	drv->id_table[x]
+	drv->id_table.usb[x]
	...>
}
2019-06-12 17:48:39 +02:00

1438 lines
39 KiB
C

/*
* UPEK TouchStrip driver for libfprint
* Copyright (C) 2007-2008 Daniel Drake <dsd@gentoo.org>
*
* Based in part on libthinkfinger:
* Copyright (C) 2006-2007 Timo Hoenig <thoenig@suse.de>
* Copyright (C) 2006 Pavel Machek <pavel@suse.cz>
*
* LGPL CRC code copied from GStreamer-0.10.10:
* Copyright (C) <1999> Erik Walthinsen <omega@cse.ogi.edu>
* Copyright (C) 2004,2006 Thomas Vander Stichele <thomas at apestaart dot org>
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; version
* 2.1 of the License.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define FP_COMPONENT "upekts"
#include "drivers_api.h"
#include "fpi-async.h"
#include "upek_proto.h"
#define EP_IN (1 | LIBUSB_ENDPOINT_IN)
#define EP_OUT (2 | LIBUSB_ENDPOINT_OUT)
#define TIMEOUT 5000
#define MSG_READ_BUF_SIZE 0x40
#define MAX_DATA_IN_READ_BUF (MSG_READ_BUF_SIZE - 9)
struct upekts_dev {
gboolean enroll_passed;
gboolean first_verify_iteration;
gboolean stop_verify;
uint8_t seq; /* FIXME: improve/automate seq handling */
};
/*
* MESSAGE FORMAT
*
* Messages to and from the device have the same format.
*
* Byte-wise:
* 'C' 'i' 'a' 'o' A B L <DATA> C1 C2
*
* Ciao prefixes all messages. The rightmost 4 bits of B become the uppermost
* 4 bits of L, and when combined with the lower 8 bits listed as 'L', L is
* the length of the data, <DATA> is L bytes long. C1 and C2 are the
* UDF-CRC16 for the whole message minus the Ciao prefix.
*
* When the device wants to command the driver to do something, it sends
* a message where B=0 and A!=0. The A value indicates the type of command.
* If the system is expected to respond to the command, it sends a message back
* with B=0 and A incremented.
*
* When the driver sends a command to the device, A=0 and B is used as a
* sequence counter. It starts at 0, increments by 0x10 on each command, and
* wraps around.
* After each command is sent, the device responds with another message
* indicating completion of the command including any data that was requested.
* This message has the same A and B values.
*
* When the driver is sending commands as above, and when the device is
* responding, the <DATA> seems to follow this structure:
*
* 28 L1 L2 0 0 S <INNERDATA>
*
* Where the length of <INNERDATA> is L-3, and S is some kind of subcommand
* code. L1 is the least significant bits of L, L2 is the most significant. In
* the device's response to a command, the subcommand code will be unchanged.
*
* After deducing and documenting the above, I found a few places where the
* above doesn't hold true. Those are marked with FIXME's below.
*/
#define CMD_SEQ_INCREMENT 0x10
static struct libusb_transfer *alloc_send_cmd_transfer(struct fp_dev *dev,
unsigned char seq_a, unsigned char seq_b, const unsigned char *data,
uint16_t len, libusb_transfer_cb_fn callback, void *user_data)
{
struct libusb_transfer *transfer = fpi_usb_alloc();
uint16_t crc;
const char *ciao = "Ciao";
/* 9 bytes extra for: 4 byte 'Ciao', 1 byte A, 1 byte B | lenHI,
* 1 byte lenLO, 2 byte CRC */
size_t urblen = len + 9;
unsigned char *buf;
if (!data && len > 0) {
fp_err("len>0 but no data?");
return NULL;
}
buf = g_malloc(urblen);
/* Write header */
memcpy(buf, ciao, strlen(ciao));
len = GUINT16_TO_LE(len);
buf[4] = seq_a;
buf[5] = seq_b | ((len & 0xf00) >> 8);
buf[6] = len & 0x00ff;
/* Copy data */
if (data)
memcpy(buf + 7, data, len);
/* Append CRC */
crc = GUINT16_TO_BE(udf_crc(buf + 4, urblen - 6));
buf[urblen - 2] = crc >> 8;
buf[urblen - 1] = crc & 0xff;
libusb_fill_bulk_transfer(transfer, fpi_dev_get_usb_dev(dev), EP_OUT, buf, urblen,
callback, user_data, TIMEOUT);
return transfer;
}
static struct libusb_transfer *alloc_send_cmd28_transfer(struct fp_dev *dev,
unsigned char subcmd, const unsigned char *data, uint16_t innerlen,
libusb_transfer_cb_fn callback, void *user_data)
{
uint16_t _innerlen = innerlen;
size_t len = innerlen + 6;
unsigned char *buf = g_malloc0(len);
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
uint8_t seq = upekdev->seq + CMD_SEQ_INCREMENT;
struct libusb_transfer *ret;
fp_dbg("seq=%02x subcmd=%02x with %d bytes of data", seq, subcmd, innerlen);
_innerlen = GUINT16_TO_LE(innerlen + 3);
buf[0] = 0x28;
buf[1] = _innerlen & 0x00ff;
buf[2] = (_innerlen & 0xff00) >> 8;
buf[5] = subcmd;
memcpy(buf + 6, data, innerlen);
ret = alloc_send_cmd_transfer(dev, 0, seq, buf, len, callback, user_data);
upekdev->seq = seq;
g_free(buf);
return ret;
}
static struct libusb_transfer *alloc_send_cmdresponse_transfer(
struct fp_dev *dev, unsigned char seq, const unsigned char *data,
uint8_t len, libusb_transfer_cb_fn callback, void *user_data)
{
fp_dbg("seq=%02x len=%d", seq, len);
return alloc_send_cmd_transfer(dev, seq, 0, data, len, callback, user_data);
}
enum read_msg_status {
READ_MSG_ERROR,
READ_MSG_CMD,
READ_MSG_RESPONSE,
};
typedef void (*read_msg_cb_fn)(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data);
struct read_msg_data {
struct fp_dev *dev;
read_msg_cb_fn callback;
void *user_data;
};
static int __read_msg_async(struct read_msg_data *udata);
#define READ_MSG_DATA_CB_ERR(udata) (udata)->callback((udata)->dev, \
READ_MSG_ERROR, 0, 0, NULL, 0, (udata)->user_data)
static void busy_ack_sent_cb(struct libusb_transfer *transfer)
{
struct read_msg_data *udata = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED ||
transfer->length != transfer->actual_length) {
READ_MSG_DATA_CB_ERR(udata);
g_free(udata);
} else {
int r = __read_msg_async(udata);
if (r < 0) {
READ_MSG_DATA_CB_ERR(udata);
g_free(udata);
}
}
libusb_free_transfer(transfer);
}
static int busy_ack_retry_read(struct read_msg_data *udata)
{
struct libusb_transfer *transfer;
int r;
transfer = alloc_send_cmdresponse_transfer(udata->dev, 0x09, NULL, 0,
busy_ack_sent_cb, udata);
if (!transfer)
return -ENOMEM;
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
}
return r;
}
/* Returns 0 if message was handled, 1 if it was a device-busy message, and
* negative on error. */
static int __handle_incoming_msg(struct read_msg_data *udata,
unsigned char *buf)
{
uint16_t len = GUINT16_FROM_LE(((buf[5] & 0xf) << 8) | buf[6]);
uint16_t computed_crc = udf_crc(buf + 4, len + 3);
uint16_t msg_crc = GUINT16_FROM_LE((buf[len + 8] << 8) | buf[len + 7]);
unsigned char *retdata = NULL;
unsigned char code_a, code_b;
if (computed_crc != msg_crc) {
fp_err("CRC failed, got %04x expected %04x", msg_crc, computed_crc);
return -1;
}
code_a = buf[4];
code_b = buf[5] & 0xf0;
len = GUINT16_FROM_LE(((buf[5] & 0xf) << 8) | buf[6]);
fp_dbg("A=%02x B=%02x len=%d", code_a, code_b, len);
if (code_a && !code_b) {
/* device sends command to driver */
fp_dbg("cmd %x from device to driver", code_a);
if (code_a == 0x08) {
int r;
fp_dbg("device busy, send busy-ack");
r = busy_ack_retry_read(udata);
return (r < 0) ? r : 1;
}
if (len > 0) {
retdata = g_malloc(len);
memcpy(retdata, buf + 7, len);
}
udata->callback(udata->dev, READ_MSG_CMD, code_a, 0, retdata, len,
udata->user_data);
g_free(retdata);
} else if (!code_a) {
/* device sends response to a previously executed command */
unsigned char *innerbuf = buf + 7;
unsigned char _subcmd;
uint16_t innerlen;
if (len < 6) {
fp_err("cmd response too short (%d)", len);
return -1;
}
if (innerbuf[0] != 0x28) {
fp_err("cmd response without 28 byte?");
return -1;
}
/* not really sure what these 2 bytes are. on most people's hardware,
* these bytes are always 0. However, Alon Bar-Lev's hardware gives
* 0xfb 0xff during the READ28_OB initsm stage. so don't error out
* if they are different... */
if (innerbuf[3] || innerbuf[4])
fp_dbg("non-zero bytes in cmd response");
innerlen = innerbuf[1] | (innerbuf[2] << 8);
innerlen = GUINT16_FROM_LE(innerlen) - 3;
_subcmd = innerbuf[5];
fp_dbg("device responds to subcmd %x with %d bytes", _subcmd, innerlen);
if (innerlen > 0) {
retdata = g_malloc(innerlen);
memcpy(retdata, innerbuf + 6, innerlen);
}
udata->callback(udata->dev, READ_MSG_RESPONSE, code_b, _subcmd,
retdata, innerlen, udata->user_data);
g_free(retdata);
} else {
fp_err("don't know how to handle this message");
return -1;
}
return 0;
}
static void read_msg_extend_cb(struct libusb_transfer *transfer)
{
struct read_msg_data *udata = transfer->user_data;
unsigned char *buf = transfer->buffer - MSG_READ_BUF_SIZE;
int handle_result = 0;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
fp_err("extended msg read failed, code %d", transfer->status);
goto err;
}
if (transfer->actual_length < transfer->length) {
fp_err("extended msg short read (%d/%d)", transfer->actual_length,
transfer->length);
goto err;
}
handle_result = __handle_incoming_msg(udata, buf);
if (handle_result < 0)
goto err;
goto out;
err:
READ_MSG_DATA_CB_ERR(udata);
out:
if (handle_result != 1)
g_free(udata);
g_free(buf);
libusb_free_transfer(transfer);
}
static void read_msg_cb(struct libusb_transfer *transfer)
{
struct read_msg_data *udata = transfer->user_data;
unsigned char *data = transfer->buffer;
uint16_t len;
int handle_result = 0;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
fp_err("async msg read failed, code %d", transfer->status);
goto err;
}
if (transfer->actual_length < 9) {
fp_err("async msg read too short (%d)", transfer->actual_length);
goto err;
}
if (strncmp(data, "Ciao", 4) != 0) {
fp_err("no Ciao for you!!");
goto err;
}
len = GUINT16_FROM_LE(((data[5] & 0xf) << 8) | data[6]);
if (transfer->actual_length != MSG_READ_BUF_SIZE
&& (len + 9) > transfer->actual_length) {
/* Check that the length claimed inside the message is in line with
* the amount of data that was transferred over USB. */
fp_err("msg didn't include enough data, expected=%d recv=%d",
len + 9, transfer->actual_length);
goto err;
}
/* We use a 64 byte buffer for reading messages. However, sometimes
* messages are longer, in which case we have to do another USB bulk read
* to read the remainder. This is handled below. */
if (len > MAX_DATA_IN_READ_BUF) {
int needed = len - MAX_DATA_IN_READ_BUF;
struct libusb_transfer *etransfer = fpi_usb_alloc();
int r;
fp_dbg("didn't fit in buffer, need to extend by %d bytes", needed);
data = g_realloc((gpointer) data, MSG_READ_BUF_SIZE + needed);
libusb_fill_bulk_transfer(etransfer, fpi_dev_get_usb_dev(udata->dev), EP_IN,
data + MSG_READ_BUF_SIZE, needed, read_msg_extend_cb, udata,
TIMEOUT);
r = libusb_submit_transfer(etransfer);
if (r < 0) {
fp_err("extended read submission failed");
/* FIXME memory leak here? */
goto err;
}
libusb_free_transfer(transfer);
return;
}
handle_result = __handle_incoming_msg(udata, data);
if (handle_result < 0)
goto err;
goto out;
err:
READ_MSG_DATA_CB_ERR(udata);
out:
libusb_free_transfer(transfer);
if (handle_result != 1)
g_free(udata);
g_free(data);
}
static int __read_msg_async(struct read_msg_data *udata)
{
unsigned char *buf = g_malloc(MSG_READ_BUF_SIZE);
struct libusb_transfer *transfer = fpi_usb_alloc();
int r;
libusb_fill_bulk_transfer(transfer, fpi_dev_get_usb_dev(udata->dev), EP_IN, buf,
MSG_READ_BUF_SIZE, read_msg_cb, udata, TIMEOUT);
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(buf);
libusb_free_transfer(transfer);
}
return r;
}
static int read_msg_async(struct fp_dev *dev, read_msg_cb_fn callback,
void *user_data)
{
struct read_msg_data *udata = g_malloc(sizeof(*udata));
int r;
udata->dev = dev;
udata->callback = callback;
udata->user_data = user_data;
r = __read_msg_async(udata);
if (r)
g_free(udata);
return r;
}
static const unsigned char init_resp03[] = {
0x01, 0x00, 0xe8, 0x03, 0x00, 0x00, 0xff, 0x07
};
static const unsigned char init28_08[] = {
0x04, 0x83, 0x00, 0x2c, 0x22, 0x23, 0x97, 0xc9, 0xa7, 0x15, 0xa0, 0x8a,
0xab, 0x3c, 0xd0, 0xbf, 0xdb, 0xf3, 0x92, 0x6f, 0xae, 0x3b, 0x1e, 0x44,
0xc4
};
static const unsigned char init28_0c[] = {
0x04, 0x03, 0x00, 0x00, 0x00
};
static const unsigned char init28_0b[] = {
0x04, 0x03, 0x00, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00,
0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xf4, 0x01, 0x00, 0x00, 0x64, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00,
0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0x0a,
0x00, 0x64, 0x00, 0xf4, 0x01, 0x32, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00
};
/* device initialisation state machine */
enum initsm_states {
WRITE_CTRL400 = 0,
READ_MSG03,
SEND_RESP03,
READ_MSG05,
SEND28_06,
READ28_06,
SEND28_07,
READ28_07,
SEND28_08,
READ28_08,
SEND28_0C,
READ28_0C,
SEND28_0B,
READ28_0B,
INITSM_NUM_STATES,
};
static void
initsm_read_msg_response_cb(fpi_ssm *ssm,
struct fp_dev *dev,
enum read_msg_status status,
uint8_t seq,
unsigned char expect_subcmd,
unsigned char subcmd)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (status != READ_MSG_RESPONSE) {
fp_err("expected response, got %d seq=%x in state %d", status, seq,
fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, -1);
} else if (subcmd != expect_subcmd) {
fp_warn("expected response to subcmd 0x%02x, got response to %02x in "
"state %d", expect_subcmd, subcmd, fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, -1);
} else if (seq != upekdev->seq) {
fp_err("expected response to cmd seq=%02x, got response to %02x "
"in state %d", upekdev->seq, seq, fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, -1);
} else {
fp_dbg("state %d completed", fpi_ssm_get_cur_state(ssm));
fpi_ssm_next_state(ssm);
}
}
static void read28_0b_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_response_cb((fpi_ssm *) user_data, dev, status, seq,
0x0b, subcmd);
}
static void read28_0c_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_response_cb((fpi_ssm *) user_data, dev, status, seq,
0x0c, subcmd);
}
static void read28_08_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_response_cb((fpi_ssm *) user_data, dev, status, seq,
0x08, subcmd);
}
static void read28_07_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_response_cb((fpi_ssm *) user_data, dev, status, seq,
0x07, subcmd);
}
static void read28_06_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_response_cb((fpi_ssm *) user_data, dev, status, seq,
0x06, subcmd);
}
static void
initsm_read_msg_cmd_cb(fpi_ssm *ssm,
struct fp_dev *dev,
enum read_msg_status status,
uint8_t expect_seq,
uint8_t seq)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (status == READ_MSG_ERROR) {
fpi_ssm_mark_failed(ssm, -1);
return;
} else if (status != READ_MSG_CMD) {
fp_err("expected command, got %d seq=%x in state %d", status, seq,
fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, -1);
return;
}
upekdev->seq = seq;
if (seq != expect_seq) {
fp_err("expected seq=%x, got %x in state %d", expect_seq, seq,
fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, -1);
return;
}
fpi_ssm_next_state(ssm);
}
static void read_msg05_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_cmd_cb((fpi_ssm *) user_data, dev, status, 5, seq);
}
static void read_msg03_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
initsm_read_msg_cmd_cb((fpi_ssm *) user_data, dev, status, 3, seq);
}
static void ctrl400_cb(struct libusb_transfer *transfer)
{
fpi_ssm *ssm = transfer->user_data;
/* FIXME check length? */
if (transfer->status == LIBUSB_TRANSFER_COMPLETED)
fpi_ssm_next_state(ssm);
else
fpi_ssm_mark_failed(ssm, -1);
g_free(transfer->buffer);
libusb_free_transfer(transfer);
}
static void
initsm_read_msg_handler(fpi_ssm *ssm,
struct fp_dev *dev,
read_msg_cb_fn callback)
{
int r = read_msg_async(dev, callback, ssm);
if (r < 0) {
fp_err("async read msg failed in state %d", fpi_ssm_get_cur_state(ssm));
fpi_ssm_mark_failed(ssm, r);
}
}
static void initsm_send_msg_cb(struct libusb_transfer *transfer)
{
fpi_ssm *ssm = transfer->user_data;
if (transfer->status == LIBUSB_TRANSFER_COMPLETED
&& transfer->length == transfer->actual_length) {
fp_dbg("state %d completed", fpi_ssm_get_cur_state(ssm));
fpi_ssm_next_state(ssm);
} else {
fp_err("failed, state=%d rqlength=%d actual_length=%d", fpi_ssm_get_cur_state(ssm),
transfer->length, transfer->actual_length);
fpi_ssm_mark_failed(ssm, -1);
}
libusb_free_transfer(transfer);
}
static void
initsm_send_msg28_handler(fpi_ssm *ssm,
struct fp_dev *dev,
unsigned char subcmd,
const unsigned char *data,
uint16_t innerlen)
{
struct libusb_transfer *transfer;
int r;
transfer = alloc_send_cmd28_transfer(dev, subcmd, data, innerlen,
initsm_send_msg_cb, ssm);
if (!transfer) {
fpi_ssm_mark_failed(ssm, -ENOMEM);
return;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
fp_err("urb submission failed error %d in state %d", r, fpi_ssm_get_cur_state(ssm));
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, -EIO);
}
}
static void initsm_run_state(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
struct libusb_transfer *transfer;
int r;
switch (fpi_ssm_get_cur_state(ssm)) {
case WRITE_CTRL400: ;
unsigned char *data;
transfer = fpi_usb_alloc();
data = g_malloc(LIBUSB_CONTROL_SETUP_SIZE + 1);
libusb_fill_control_setup(data,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE, 0x0c, 0x100, 0x0400, 1);
libusb_fill_control_transfer(transfer, fpi_dev_get_usb_dev(dev), data,
ctrl400_cb, ssm, TIMEOUT);
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(data);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, r);
}
break;
case READ_MSG03:
initsm_read_msg_handler(ssm, dev, read_msg03_cb);
break;
case SEND_RESP03: ;
transfer = alloc_send_cmdresponse_transfer(dev, ++upekdev->seq,
init_resp03, sizeof(init_resp03), initsm_send_msg_cb, ssm);
if (!transfer) {
fpi_ssm_mark_failed(ssm, -ENOMEM);
break;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, r);
}
break;
case READ_MSG05:
initsm_read_msg_handler(ssm, dev, read_msg05_cb);
break;
case SEND28_06: ;
unsigned char dummy28_06 = 0x04;
upekdev->seq = 0xf0;
initsm_send_msg28_handler(ssm, dev, 0x06, &dummy28_06, 1);
break;
case READ28_06:
initsm_read_msg_handler(ssm, dev, read28_06_cb);
break;
case SEND28_07: ;
unsigned char dummy28_07 = 0x04;
initsm_send_msg28_handler(ssm, dev, 0x07, &dummy28_07, 1);
break;
case READ28_07:
initsm_read_msg_handler(ssm, dev, read28_07_cb);
break;
case SEND28_08:
initsm_send_msg28_handler(ssm, dev, 0x08, init28_08, sizeof(init28_08));
break;
case READ28_08:
initsm_read_msg_handler(ssm, dev, read28_08_cb);
break;
case SEND28_0C:
initsm_send_msg28_handler(ssm, dev, 0x0c, init28_0c, sizeof(init28_0c));
break;
case READ28_0C:
initsm_read_msg_handler(ssm, dev, read28_0c_cb);
break;
case SEND28_0B:
initsm_send_msg28_handler(ssm, dev, 0x0b, init28_0b, sizeof(init28_0b));
break;
case READ28_0B:
initsm_read_msg_handler(ssm, dev, read28_0b_cb);
break;
}
}
static fpi_ssm *initsm_new(struct fp_dev *dev,
void *user_data)
{
return fpi_ssm_new(dev, initsm_run_state, INITSM_NUM_STATES, user_data);
}
enum deinitsm_states {
SEND_RESP07 = 0,
READ_MSG01,
DEINITSM_NUM_STATES,
};
static void send_resp07_cb(struct libusb_transfer *transfer)
{
fpi_ssm *ssm = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED)
fpi_ssm_mark_failed(ssm, -EIO);
else if (transfer->length != transfer->actual_length)
fpi_ssm_mark_failed(ssm, -EPROTO);
else
fpi_ssm_next_state(ssm);
libusb_free_transfer(transfer);
}
static void read_msg01_cb(struct fp_dev *dev, enum read_msg_status status,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
fpi_ssm *ssm = user_data;
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (status == READ_MSG_ERROR) {
fpi_ssm_mark_failed(ssm, -1);
return;
} else if (status != READ_MSG_CMD) {
fp_err("expected command, got %d seq=%x", status, seq);
fpi_ssm_mark_failed(ssm, -1);
return;
}
upekdev->seq = seq;
if (seq != 1) {
fp_err("expected seq=1, got %x", seq);
fpi_ssm_mark_failed(ssm, -1);
return;
}
fpi_ssm_next_state(ssm);
}
static void deinitsm_state_handler(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
int r;
switch (fpi_ssm_get_cur_state(ssm)) {
case SEND_RESP07: ;
struct libusb_transfer *transfer;
unsigned char dummy = 0;
transfer = alloc_send_cmdresponse_transfer(dev, 0x07, &dummy, 1,
send_resp07_cb, ssm);
if (!transfer) {
fpi_ssm_mark_failed(ssm, -ENOMEM);
break;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, r);
}
break;
case READ_MSG01: ;
r = read_msg_async(dev, read_msg01_cb, ssm);
if (r < 0)
fpi_ssm_mark_failed(ssm, r);
break;
}
}
static fpi_ssm *deinitsm_new(struct fp_dev *dev)
{
return fpi_ssm_new(dev, deinitsm_state_handler, DEINITSM_NUM_STATES, NULL);
}
static int dev_init(struct fp_dev *dev, unsigned long driver_data)
{
struct upekts_dev *upekdev = NULL;
int r;
r = libusb_claim_interface(fpi_dev_get_usb_dev(dev), 0);
if (r < 0) {
fp_err("could not claim interface 0: %s", libusb_error_name(r));
return r;
}
upekdev = g_malloc(sizeof(*upekdev));
upekdev->seq = 0xf0; /* incremented to 0x00 before first cmd */
fp_dev_set_instance_data(dev, upekdev);
fpi_dev_set_nr_enroll_stages(dev, 3);
fpi_drvcb_open_complete(dev, 0);
return 0;
}
static void dev_exit(struct fp_dev *dev)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
libusb_release_interface(fpi_dev_get_usb_dev(dev), 0);
g_free(upekdev);
fpi_drvcb_close_complete(dev);
}
static const unsigned char enroll_init[] = {
0x02, 0xc0, 0xd4, 0x01, 0x00, 0x04, 0x00, 0x08
};
static const unsigned char scan_comp[] = {
0x12, 0xff, 0xff, 0xff, 0xff /* scan completion, prefixes print data */
};
/* used for enrollment and verification */
static const unsigned char poll_data[] = { 0x30, 0x01 };
enum enroll_start_sm_states {
RUN_INITSM = 0,
ENROLL_INIT,
READ_ENROLL_MSG28,
ENROLL_START_NUM_STATES,
};
/* Called when the device initialization state machine completes */
static void enroll_start_sm_cb_initsm(fpi_ssm *initsm, struct fp_dev *_dev, void *user_data)
{
fpi_ssm *enroll_start_ssm = user_data;
int error = fpi_ssm_get_error(initsm);
fpi_ssm_free(initsm);
if (error)
fpi_ssm_mark_failed(enroll_start_ssm, error);
else
fpi_ssm_next_state(enroll_start_ssm);
}
/* called when enroll init URB has completed */
static void enroll_start_sm_cb_init(struct libusb_transfer *transfer)
{
fpi_ssm *ssm = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED)
fpi_ssm_mark_failed(ssm, -EIO);
else if (transfer->length != transfer->actual_length)
fpi_ssm_mark_failed(ssm, -EPROTO);
else
fpi_ssm_next_state(ssm);
libusb_free_transfer(transfer);
}
static void enroll_start_sm_cb_msg28(struct fp_dev *dev,
enum read_msg_status status, uint8_t seq, unsigned char subcmd,
unsigned char *data, size_t data_len, void *user_data)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
fpi_ssm *ssm = user_data;
if (status != READ_MSG_RESPONSE) {
fp_err("expected response, got %d seq=%x", status, seq);
fpi_ssm_mark_failed(ssm, -1);
} else if (subcmd != 0) {
fp_warn("expected response to subcmd 0, got response to %02x",
subcmd);
fpi_ssm_mark_failed(ssm, -1);
} else if (seq != upekdev->seq) {
fp_err("expected response to cmd seq=%02x, got response to %02x",
upekdev->seq, seq);
fpi_ssm_mark_failed(ssm, -1);
} else {
fpi_ssm_next_state(ssm);
}
}
static void enroll_start_sm_run_state(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
int r;
switch (fpi_ssm_get_cur_state(ssm)) {
case RUN_INITSM: ;
fpi_ssm *initsm = initsm_new(dev, ssm);
fpi_ssm_start(initsm, enroll_start_sm_cb_initsm);
break;
case ENROLL_INIT: ;
struct libusb_transfer *transfer;
transfer = alloc_send_cmd28_transfer(dev, 0x02, enroll_init,
sizeof(enroll_init), enroll_start_sm_cb_init, ssm);
if (!transfer) {
fpi_ssm_mark_failed(ssm, -ENOMEM);
break;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, r);
}
break;
case READ_ENROLL_MSG28: ;
/* FIXME: protocol misunderstanding here. device receives response
* to subcmd 0 after submitting subcmd 2? */
/* actually this is probably a poll response? does the above cmd
* include a 30 01 poll somewhere? */
r = read_msg_async(dev, enroll_start_sm_cb_msg28, ssm);
if (r < 0)
fpi_ssm_mark_failed(ssm, r);
break;
}
}
static void enroll_iterate(struct fp_dev *dev);
static void e_handle_resp00(struct fp_dev *dev, unsigned char *data,
size_t data_len)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
unsigned char status;
int result = 0;
if (data_len != 14) {
fp_err("received 3001 poll response of %lu bytes?", data_len);
fpi_drvcb_enroll_stage_completed(dev, -EPROTO, NULL, NULL);
return;
}
status = data[5];
fp_dbg("poll result = %02x", status);
switch (status) {
case 0x0c:
case 0x0d:
case 0x0e:
case 0x26:
case 0x27:
case 0x2e:
/* if we previously completed a non-last enrollment stage, we'll
* get this code to indicate successful stage completion */
if (upekdev->enroll_passed) {
result = FP_ENROLL_PASS;
upekdev->enroll_passed = FALSE;
}
/* otherwise it just means "no news" so we poll again */
break;
case 0x1c: /* FIXME what does this one mean? */
case 0x0b: /* FIXME what does this one mean? */
case 0x23: /* FIXME what does this one mean? */
result = FP_ENROLL_RETRY;
break;
case 0x0f: /* scan taking too long, remove finger and try again */
result = FP_ENROLL_RETRY_REMOVE_FINGER;
break;
case 0x1e: /* swipe too short */
result = FP_ENROLL_RETRY_TOO_SHORT;
break;
case 0x24: /* finger not centered */
result = FP_ENROLL_RETRY_CENTER_FINGER;
break;
case 0x20:
/* finger scanned successfully */
/* need to look at the next poll result to determine if enrollment is
* complete or not */
upekdev->enroll_passed = 1;
break;
case 0x00: /* enrollment complete */
/* we can now expect the enrollment data on the next poll, so we
* have nothing to do here */
break;
default:
fp_err("unrecognised scan status code %02x", status);
result = -EPROTO;
break;
}
if (result) {
fpi_drvcb_enroll_stage_completed(dev, result, NULL, NULL);
if (result > 0)
enroll_iterate(dev);
} else {
enroll_iterate(dev);
}
/* FIXME: need to extend protocol research to handle the case when
* enrolment fails, e.g. you scan a different finger on each stage */
/* FIXME: should do proper tracking of when we expect cmd0 results and
* cmd2 results and enforce it */
}
static void e_handle_resp02(struct fp_dev *dev, unsigned char *data,
size_t data_len)
{
struct fp_print_data *fdata = NULL;
struct fp_print_data_item *item = NULL;
int result = -EPROTO;
if (data_len < sizeof(scan_comp)) {
fp_err("fingerprint data too short (%lu bytes)", data_len);
} else if (memcmp(data, scan_comp, sizeof(scan_comp)) != 0) {
fp_err("unrecognised data prefix %x %x %x %x %x",
data[0], data[1], data[2], data[3], data[4]);
} else {
fdata = fpi_print_data_new(dev);
item = fpi_print_data_item_new(data_len - sizeof(scan_comp));
memcpy(item->data, data + sizeof(scan_comp),
data_len - sizeof(scan_comp));
fpi_print_data_add_item(fdata, item);
result = FP_ENROLL_COMPLETE;
}
fpi_drvcb_enroll_stage_completed(dev, result, fdata, NULL);
}
static void enroll_iterate_msg_cb(struct fp_dev *dev,
enum read_msg_status msgstat, uint8_t seq, unsigned char subcmd,
unsigned char *data, size_t data_len, void *user_data)
{
if (msgstat != READ_MSG_RESPONSE) {
fp_err("expected response, got %d seq=%x", msgstat, seq);
fpi_drvcb_enroll_stage_completed(dev, -EPROTO, NULL, NULL);
return;
}
if (subcmd == 0) {
e_handle_resp00(dev, data, data_len);
} else if (subcmd == 2) {
e_handle_resp02(dev, data, data_len);
} else {
fp_err("unexpected subcmd %d", subcmd);
fpi_drvcb_enroll_stage_completed(dev, -EPROTO, NULL, NULL);
}
}
static void enroll_iterate_cmd_cb(struct libusb_transfer *transfer)
{
struct fp_dev *dev = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
fpi_drvcb_enroll_stage_completed(dev, -EIO, NULL, NULL);
} else if (transfer->length != transfer->actual_length) {
fpi_drvcb_enroll_stage_completed(dev, -EPROTO, NULL, NULL);
} else {
int r = read_msg_async(dev, enroll_iterate_msg_cb, NULL);
if (r < 0)
fpi_drvcb_enroll_stage_completed(dev, r, NULL, NULL);
}
libusb_free_transfer(transfer);
}
static void enroll_iterate(struct fp_dev *dev)
{
int r;
struct libusb_transfer *transfer = alloc_send_cmd28_transfer(dev, 0x00,
poll_data, sizeof(poll_data), enroll_iterate_cmd_cb, dev);
if (!transfer) {
fpi_drvcb_enroll_stage_completed(dev, -ENOMEM, NULL, NULL);
return;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_drvcb_enroll_stage_completed(dev, -EIO, NULL, NULL);
}
}
static void enroll_started(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
fpi_drvcb_enroll_started(dev, fpi_ssm_get_error(ssm));
if (!fpi_ssm_get_error(ssm))
enroll_iterate(dev);
fpi_ssm_free(ssm);
}
static int enroll_start(struct fp_dev *dev)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
/* do_init state machine first */
fpi_ssm *ssm = fpi_ssm_new(dev, enroll_start_sm_run_state,
ENROLL_START_NUM_STATES, NULL);
upekdev->enroll_passed = FALSE;
fpi_ssm_start(ssm, enroll_started);
return 0;
}
static void enroll_stop_deinit_cb(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
/* don't really care about errors */
fpi_drvcb_enroll_stopped(dev);
fpi_ssm_free(ssm);
}
static int enroll_stop(struct fp_dev *dev)
{
fpi_ssm *ssm = deinitsm_new(dev);
fpi_ssm_start(ssm, enroll_stop_deinit_cb);
return 0;
}
static void verify_stop_deinit_cb(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
/* don't really care about errors */
fpi_drvcb_verify_stopped(dev);
fpi_ssm_free(ssm);
}
static void do_verify_stop(struct fp_dev *dev)
{
fpi_ssm *ssm = deinitsm_new(dev);
fpi_ssm_start(ssm, verify_stop_deinit_cb);
}
static const unsigned char verify_hdr[] = {
0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0xc0, 0xd4, 0x01, 0x00, 0x20, 0x00, 0x00, 0x00, 0x03, 0x00, 0x00,
0x00
};
enum {
VERIFY_RUN_INITSM = 0,
VERIFY_INIT,
VERIFY_NUM_STATES,
};
/* Called when the device initialization state machine completes */
static void verify_start_sm_cb_initsm(fpi_ssm *initsm, struct fp_dev *_dev, void *user_data)
{
fpi_ssm *verify_start_ssm = user_data;
int err;
err = fpi_ssm_get_error(initsm);
if (err)
fpi_ssm_mark_failed(verify_start_ssm, err);
else
fpi_ssm_next_state(verify_start_ssm);
fpi_ssm_free(initsm);
}
static void verify_init_2803_cb(struct libusb_transfer *transfer)
{
fpi_ssm *ssm = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED)
fpi_ssm_mark_failed(ssm, -EIO);
else if (transfer->length != transfer->actual_length)
fpi_ssm_mark_failed(ssm, -EPROTO);
else
fpi_ssm_next_state(ssm);
libusb_free_transfer(transfer);
}
static void verify_start_sm_run_state(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
int r;
switch (fpi_ssm_get_cur_state(ssm)) {
case VERIFY_RUN_INITSM: ;
fpi_ssm *initsm = initsm_new(dev, ssm);
fpi_ssm_start(initsm, verify_start_sm_cb_initsm);
break;
case VERIFY_INIT: ;
struct fp_print_data *print = fpi_dev_get_verify_data(dev);
struct fp_print_data_item *item = fpi_print_data_get_item(print);
size_t data_len = sizeof(verify_hdr) + item->length;
unsigned char *data = g_malloc(data_len);
struct libusb_transfer *transfer;
memcpy(data, verify_hdr, sizeof(verify_hdr));
memcpy(data + sizeof(verify_hdr), item->data, item->length);
transfer = alloc_send_cmd28_transfer(dev, 0x03, data, data_len,
verify_init_2803_cb, ssm);
g_free(data);
if (!transfer) {
fpi_ssm_mark_failed(ssm, -ENOMEM);
break;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_ssm_mark_failed(ssm, -EIO);
}
break;
}
}
static void verify_iterate(struct fp_dev *dev);
static void v_handle_resp00(struct fp_dev *dev, unsigned char *data,
size_t data_len)
{
unsigned char status;
int r = 0;
if (data_len != 14) {
fp_err("received 3001 poll response of %lu bytes?", data_len);
r = -EPROTO;
goto out;
}
status = data[5];
fp_dbg("poll result = %02x", status);
/* These codes indicate that we're waiting for a finger scan, so poll
* again */
switch (status) {
case 0x0c: /* no news, poll again */
break;
case 0x20:
fp_dbg("processing scan for verification");
break;
case 0x00:
fp_dbg("good image");
break;
case 0x1c: /* FIXME what does this one mean? */
case 0x0b: /* FIXME what does this one mean? */
case 0x23: /* FIXME what does this one mean? */
r = FP_VERIFY_RETRY;
break;
case 0x0f: /* scan taking too long, remove finger and try again */
r = FP_VERIFY_RETRY_REMOVE_FINGER;
break;
case 0x1e: /* swipe too short */
r = FP_VERIFY_RETRY_TOO_SHORT;
break;
case 0x24: /* finger not centered */
r = FP_VERIFY_RETRY_CENTER_FINGER;
break;
default:
fp_err("unrecognised verify status code %02x", status);
r = -EPROTO;
}
out:
if (r)
fpi_drvcb_report_verify_result(dev, r, NULL);
if (r >= 0)
verify_iterate(dev);
}
static void v_handle_resp03(struct fp_dev *dev, unsigned char *data,
size_t data_len)
{
int r;
if (data_len < 2) {
fp_err("verify result abnormally short!");
r = -EPROTO;
} else if (data[0] != 0x12) {
fp_err("unexpected verify header byte %02x", data[0]);
r = -EPROTO;
} else if (data[1] == 0x00) {
r = FP_VERIFY_NO_MATCH;
} else if (data[1] == 0x01) {
r = FP_VERIFY_MATCH;
} else {
fp_err("unrecognised verify result %02x", data[1]);
r = -EPROTO;
}
fpi_drvcb_report_verify_result(dev, r, NULL);
}
static void verify_rd2800_cb(struct fp_dev *dev, enum read_msg_status msgstat,
uint8_t seq, unsigned char subcmd, unsigned char *data, size_t data_len,
void *user_data)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (msgstat != READ_MSG_RESPONSE) {
fp_err("expected response, got %d seq=%x", msgstat, seq);
fpi_drvcb_report_verify_result(dev, -EPROTO, NULL);
return;
} else if (seq != upekdev->seq) {
fp_err("expected response to cmd seq=%02x, got response to %02x",
upekdev->seq, seq);
fpi_drvcb_report_verify_result(dev, -EPROTO, NULL);
return;
}
if (subcmd == 0)
v_handle_resp00(dev, data, data_len);
else if (subcmd == 3)
v_handle_resp03(dev, data, data_len);
else
fpi_drvcb_report_verify_result(dev, -EPROTO, NULL);
}
static void verify_wr2800_cb(struct libusb_transfer *transfer)
{
struct fp_dev *dev = transfer->user_data;
if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
fpi_drvcb_report_verify_result(dev, -EIO, NULL);
} else if (transfer->length != transfer->actual_length) {
fpi_drvcb_report_verify_result(dev, -EIO, NULL);
} else {
int r = read_msg_async(dev, verify_rd2800_cb, NULL);
if (r < 0)
fpi_drvcb_report_verify_result(dev, r, NULL);
}
libusb_free_transfer(transfer);
}
static void verify_iterate(struct fp_dev *dev)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (upekdev->stop_verify) {
do_verify_stop(dev);
return;
}
/* FIXME: this doesn't flow well, should the first cmd be moved from
* verify init to here? */
if (upekdev->first_verify_iteration) {
int r = read_msg_async(dev, verify_rd2800_cb, NULL);
upekdev->first_verify_iteration = FALSE;
if (r < 0)
fpi_drvcb_report_verify_result(dev, r, NULL);
} else {
int r;
struct libusb_transfer *transfer = alloc_send_cmd28_transfer(dev,
0x00, poll_data, sizeof(poll_data), verify_wr2800_cb, dev);
if (!transfer) {
fpi_drvcb_report_verify_result(dev, -ENOMEM, NULL);
return;
}
r = libusb_submit_transfer(transfer);
if (r < 0) {
g_free(transfer->buffer);
libusb_free_transfer(transfer);
fpi_drvcb_report_verify_result(dev, -EIO, NULL);
}
}
}
static void verify_started(fpi_ssm *ssm, struct fp_dev *dev, void *user_data)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
fpi_drvcb_verify_started(dev, fpi_ssm_get_error(ssm));
if (!fpi_ssm_get_error(ssm)) {
upekdev->first_verify_iteration = TRUE;
verify_iterate(dev);
}
fpi_ssm_free(ssm);
}
static int verify_start(struct fp_dev *dev)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
fpi_ssm *ssm = fpi_ssm_new(dev, verify_start_sm_run_state,
VERIFY_NUM_STATES, NULL);
upekdev->stop_verify = FALSE;
fpi_ssm_start(ssm, verify_started);
return 0;
}
static int verify_stop(struct fp_dev *dev, gboolean iterating)
{
struct upekts_dev *upekdev = FP_INSTANCE_DATA(dev);
if (!iterating)
do_verify_stop(dev);
else
upekdev->stop_verify = TRUE;
return 0;
}
static const struct usb_id id_table[] = {
{ .vendor = 0x0483, .product = 0x2016 },
{ 0, 0, 0, }, /* terminating entry */
};
struct fp_driver upekts_driver = {
.id = UPEKTS_ID,
.name = FP_COMPONENT,
.full_name = "UPEK TouchStrip",
.bus = BUS_TYPE_USB,
.id_table.usb = id_table,
.scan_type = FP_SCAN_TYPE_SWIPE,
.open = dev_init,
.close = dev_exit,
.enroll_start = enroll_start,
.enroll_stop = enroll_stop,
.verify_start = verify_start,
.verify_stop = verify_stop,
};