libfprint/libfprint/fpi-core.h
Bastien Nocera 451a4c0969 lib: Remove duplicated structs from fp_internal.h
They are already declared in fpi-core.h. Also move their API docs
to fpi-core.h.
2018-11-30 16:08:42 +01:00

119 lines
3.5 KiB
C

/*
* Copyright (C) 2007-2008 Daniel Drake <dsd@gentoo.org>
* Copyright (C) 2018 Bastien Nocera <hadess@hadess.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __FPI_CORE_H__
#define __FPI_CORE_H__
#include <fprint.h>
#include "fpi-dev-img.h"
/**
* usb_id:
* @vendor: the USB vendor ID
* @product: the USB product ID
* @driver_data: data to differentiate devices of different
* vendor and product IDs.
*
* The struct #usb_id is used to declare devices supported by a
* particular driver. The @driver_data information is used to
* differentiate different models of devices which only need
* small changes compared to the default driver behaviour to function.
*
* For example, a device might have a different initialisation from
* the stock device, so the driver could do:
*
* |[<!-- language="C" -->
* if (driver_data == MY_DIFFERENT_DEVICE_QUIRK) {
* ...
* } else {
* ...
* }
* ]|
*
* The default value is zero, so the @driver_data needs to be a
* non-zero to be useful.
*/
struct usb_id {
uint16_t vendor;
uint16_t product;
unsigned long driver_data;
};
/**
* fp_driver_type:
* @DRIVER_PRIMITIVE: primitive, non-imaging, driver
* @DRIVER_IMAGING: imaging driver
*
* The type of device the driver supports.
*/
enum fp_driver_type {
DRIVER_PRIMITIVE = 0,
DRIVER_IMAGING = 1,
};
struct fp_driver {
const uint16_t id;
const char *name;
const char *full_name;
const struct usb_id * const id_table;
enum fp_driver_type type;
enum fp_scan_type scan_type;
/* Device operations */
int (*discover)(struct libusb_device_descriptor *dsc, uint32_t *devtype);
int (*open)(struct fp_dev *dev, unsigned long driver_data);
void (*close)(struct fp_dev *dev);
int (*enroll_start)(struct fp_dev *dev);
int (*enroll_stop)(struct fp_dev *dev);
int (*verify_start)(struct fp_dev *dev);
int (*verify_stop)(struct fp_dev *dev, gboolean iterating);
int (*identify_start)(struct fp_dev *dev);
int (*identify_stop)(struct fp_dev *dev, gboolean iterating);
int (*capture_start)(struct fp_dev *dev);
int (*capture_stop)(struct fp_dev *dev);
};
/**
* FpiImgDriverFlags:
* @FP_IMGDRV_SUPPORTS_UNCONDITIONAL_CAPTURE: Whether the driver supports
* unconditional image capture. No driver currently does.
*
* Flags used in the #fp_img_driver to advertise the capabilities of drivers.
*/
typedef enum {
FP_IMGDRV_SUPPORTS_UNCONDITIONAL_CAPTURE = 1 << 0
} FpiImgDriverFlags;
struct fp_img_driver {
struct fp_driver driver;
FpiImgDriverFlags flags;
int img_width;
int img_height;
int bz3_threshold;
/* Device operations */
int (*open)(struct fp_img_dev *dev, unsigned long driver_data);
void (*close)(struct fp_img_dev *dev);
int (*activate)(struct fp_img_dev *dev, enum fp_imgdev_state state);
int (*change_state)(struct fp_img_dev *dev, enum fp_imgdev_state state);
void (*deactivate)(struct fp_img_dev *dev);
};
#endif