libfprint/libfprint/fprint.h
2007-11-04 00:21:54 +00:00

189 lines
7.4 KiB
C

/*
* Main definitions for libfprint
* Copyright (C) 2007 Daniel Drake <dsd@gentoo.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __FPRINT_H__
#define __FPRINT_H__
#include <stdint.h>
/* structs that applications are not allowed to peek into */
struct fp_dscv_dev;
struct fp_dscv_print;
struct fp_dev;
struct fp_driver;
struct fp_print_data;
struct fp_img;
/* misc/general stuff */
/** \ingroup print_data
* Numeric codes used to refer to fingers (and thumbs) of a human. These are
* purposely not available as strings, to avoid getting the library tangled up
* in localization efforts.
*/
enum fp_finger {
LEFT_THUMB = 1, /** thumb (left hand) */
LEFT_INDEX, /** index finger (left hand) */
LEFT_MIDDLE, /** middle finger (left hand) */
LEFT_RING, /** ring finger (left hand) */
LEFT_LITTLE, /** little finger (left hand) */
RIGHT_THUMB, /** thumb (right hand) */
RIGHT_INDEX, /** index finger (right hand) */
RIGHT_MIDDLE, /** middle finger (right hand) */
RIGHT_RING, /** ring finger (right hand) */
RIGHT_LITTLE, /** little finger (right hand) */
};
/* Drivers */
const char *fp_driver_get_name(struct fp_driver *drv);
const char *fp_driver_get_full_name(struct fp_driver *drv);
uint16_t fp_driver_get_driver_id(struct fp_driver *drv);
/* Device discovery */
struct fp_dscv_dev **fp_discover_devs(void);
void fp_dscv_devs_free(struct fp_dscv_dev **devs);
struct fp_driver *fp_dscv_dev_get_driver(struct fp_dscv_dev *dev);
uint32_t fp_dscv_dev_get_devtype(struct fp_dscv_dev *dev);
int fp_dscv_dev_supports_print_data(struct fp_dscv_dev *dev,
struct fp_print_data *print);
int fp_dscv_dev_supports_dscv_print(struct fp_dscv_dev *dev,
struct fp_dscv_print *print);
struct fp_dscv_dev *fp_dscv_dev_for_print_data(struct fp_dscv_dev **devs,
struct fp_print_data *print);
struct fp_dscv_dev *fp_dscv_dev_for_dscv_print(struct fp_dscv_dev **devs,
struct fp_dscv_print *print);
static inline uint16_t fp_dscv_dev_get_driver_id(struct fp_dscv_dev *dev)
{
return fp_driver_get_driver_id(fp_dscv_dev_get_driver(dev));
}
/* Print discovery */
struct fp_dscv_print **fp_discover_prints(void);
void fp_dscv_prints_free(struct fp_dscv_print **prints);
uint16_t fp_dscv_print_get_driver_id(struct fp_dscv_print *print);
uint32_t fp_dscv_print_get_devtype(struct fp_dscv_print *print);
enum fp_finger fp_dscv_print_get_finger(struct fp_dscv_print *print);
/* Device handling */
struct fp_dev *fp_dev_open(struct fp_dscv_dev *ddev);
void fp_dev_close(struct fp_dev *dev);
struct fp_driver *fp_dev_get_driver(struct fp_dev *dev);
int fp_dev_get_nr_enroll_stages(struct fp_dev *dev);
uint32_t fp_dev_get_devtype(struct fp_dev *dev);
int fp_dev_supports_print_data(struct fp_dev *dev, struct fp_print_data *data);
int fp_dev_supports_dscv_print(struct fp_dev *dev, struct fp_dscv_print *print);
int fp_dev_supports_imaging(struct fp_dev *dev);
int fp_dev_img_capture(struct fp_dev *dev, int unconditional,
struct fp_img **image);
int fp_dev_get_img_width(struct fp_dev *dev);
int fp_dev_get_img_height(struct fp_dev *dev);
/** \ingroup dev
* Enrollment result codes returned from fp_enroll_finger().
* Result codes with RETRY in the name suggest that the scan failed due to
* user error. Applications will generally want to inform the user of the
* problem and then retry the enrollment stage. For more info on the semantics
* of interpreting these result codes and tracking enrollment process, see
* \ref enrolling.
*/
enum fp_enroll_result {
/** Enrollment completed successfully, the enrollment data has been
* returned to the caller. */
FP_ENROLL_COMPLETE = 1,
/** Enrollment failed due to incomprehensible data; this may occur when
* the user scans a different finger on each enroll stage. */
FP_ENROLL_FAIL,
/** Enroll stage passed; more stages are need to complete the process. */
FP_ENROLL_PASS,
/** The enrollment scan did not succeed due to poor scan quality or
* other general user scanning problem. */
FP_ENROLL_RETRY = 100,
/** The enrollment scan did not succeed because the finger swipe was
* too short. */
FP_ENROLL_RETRY_TOO_SHORT,
/** The enrollment scan did not succeed because the finger was not
* centered on the scanner. */
FP_ENROLL_RETRY_CENTER_FINGER,
/** The verification scan did not succeed due to quality or pressure
* problems; the user should remove their finger from the scanner before
* retrying. */
FP_ENROLL_RETRY_REMOVE_FINGER,
};
int fp_enroll_finger(struct fp_dev *dev, struct fp_print_data **print_data);
/** \ingroup dev
* Verification result codes returned from fp_verify_finger().
* Result codes with RETRY in the name suggest that the scan failed due to
* user error. Applications will generally want to inform the user of the
* problem and then retry the verify operation.
*/
enum fp_verify_result {
/** The verification scan completed successfully, but the newly scanned
* fingerprint does not match the fingerprint being verified against. */
FP_VERIFY_NO_MATCH = 0,
/** The verification scan completed successfully and the newly scanned
* fingerprint does match the fingerprint being verified. */
FP_VERIFY_MATCH = 1,
/** The verification scan did not succeed due to poor scan quality or
* other general user scanning problem. */
FP_VERIFY_RETRY = FP_ENROLL_RETRY,
/** The verification scan did not succeed because the finger swipe was
* too short. */
FP_VERIFY_RETRY_TOO_SHORT = FP_ENROLL_RETRY_TOO_SHORT,
/** The verification scan did not succeed because the finger was not
* centered on the scanner. */
FP_VERIFY_RETRY_CENTER_FINGER = FP_ENROLL_RETRY_CENTER_FINGER,
/** The verification scan did not succeed due to quality or pressure
* problems; the user should remove their finger from the scanner before
* retrying. */
FP_VERIFY_RETRY_REMOVE_FINGER = FP_ENROLL_RETRY_REMOVE_FINGER,
};
int fp_verify_finger(struct fp_dev *dev, struct fp_print_data *enrolled_print);
/* Data handling */
int fp_print_data_load(struct fp_dev *dev, enum fp_finger finger,
struct fp_print_data **data);
int fp_print_data_from_dscv_print(struct fp_dscv_print *print,
struct fp_print_data **data);
int fp_print_data_save(struct fp_print_data *data, enum fp_finger finger);
void fp_print_data_free(struct fp_print_data *data);
size_t fp_print_data_get_data(struct fp_print_data *data, unsigned char **ret);
struct fp_print_data *fp_print_data_from_data(unsigned char *buf,
size_t buflen);
uint16_t fp_print_data_get_driver_id(struct fp_print_data *data);
uint32_t fp_print_data_get_devtype(struct fp_print_data *data);
/* Image handling */
int fp_img_get_height(struct fp_img *img);
int fp_img_get_width(struct fp_img *img);
unsigned char *fp_img_get_data(struct fp_img *img);
int fp_img_save_to_file(struct fp_img *img, char *path);
void fp_img_standardize(struct fp_img *img);
void fp_img_free(struct fp_img *img);
/* Library */
int fp_init(void);
#endif