/* * Image assembling routines * Copyright (C) 2007-2008 Daniel Drake * Copyright (C) 2013 Arseniy Lartsev * Copyright (C) 2015 Vasily Khoruzhick * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define FP_COMPONENT "assembling" #include "fp_internal.h" #include #include #include #include #include "assembling.h" static unsigned int calc_error(struct fpi_frame_asmbl_ctx *ctx, struct fpi_frame *first_frame, struct fpi_frame *second_frame, int dx, int dy) { unsigned int width, height; unsigned int x1, y1, x2, y2, err, i, j; width = ctx->frame_width - (dx > 0 ? dx : -dx); height = ctx->frame_height - dy; y1 = 0; y2 = dy; i = 0; err = 0; do { x1 = dx < 0 ? 0 : dx; x2 = dx < 0 ? -dx : 0; j = 0; do { unsigned char v1, v2; v1 = ctx->get_pixel(ctx, first_frame, x1, y1); v2 = ctx->get_pixel(ctx, second_frame, x2, y2); err += v1 > v2 ? v1 - v2 : v2 - v1; j++; x1++; x2++; } while (j < width); i++; y1++; y2++; } while (i < height); /* Normalize error */ err *= (ctx->frame_height * ctx->frame_width); err /= (height * width); if (err == 0) return INT_MAX; return err; } /* This function is rather CPU-intensive. It's better to use hardware * to detect movement direction when possible. */ static void find_overlap(struct fpi_frame_asmbl_ctx *ctx, struct fpi_frame *first_frame, struct fpi_frame *second_frame, unsigned int *min_error) { int dx, dy; unsigned int err; *min_error = 255 * ctx->frame_height * ctx->frame_width; /* Seeking in horizontal and vertical dimensions, * for horizontal dimension we'll check only 8 pixels * in both directions. For vertical direction diff is * rarely less than 2, so start with it. */ for (dy = 2; dy < ctx->frame_height; dy++) { for (dx = -8; dx < 8; dx++) { err = calc_error(ctx, first_frame, second_frame, dx, dy); if (err < *min_error) { *min_error = err; second_frame->delta_x = -dx; second_frame->delta_y = dy; } } } } static unsigned int do_movement_estimation(struct fpi_frame_asmbl_ctx *ctx, GSList *stripes, size_t num_stripes, gboolean reverse) { GSList *list_entry = stripes; GTimer *timer; int frame = 1; struct fpi_frame *prev_stripe = list_entry->data; unsigned int min_error; /* Max error is width * height * 255, for AES2501 which has the largest * sensor its 192*16*255 = 783360. So for 32bit value it's ~5482 frame before * we might get int overflow. Use 64bit value here to prevent integer overflow */ unsigned long long total_error = 0; list_entry = g_slist_next(list_entry); timer = g_timer_new(); do { struct fpi_frame *cur_stripe = list_entry->data; if (reverse) { find_overlap(ctx, prev_stripe, cur_stripe, &min_error); cur_stripe->delta_y = -cur_stripe->delta_y; cur_stripe->delta_x = -cur_stripe->delta_x; } else find_overlap(ctx, cur_stripe, prev_stripe, &min_error); total_error += min_error; frame++; prev_stripe = cur_stripe; list_entry = g_slist_next(list_entry); } while (frame < num_stripes); g_timer_stop(timer); fp_dbg("calc delta completed in %f secs", g_timer_elapsed(timer, NULL)); g_timer_destroy(timer); return total_error / num_stripes; } void fpi_do_movement_estimation(struct fpi_frame_asmbl_ctx *ctx, GSList *stripes, size_t num_stripes) { int err, rev_err; err = do_movement_estimation(ctx, stripes, num_stripes, FALSE); rev_err = do_movement_estimation(ctx, stripes, num_stripes, TRUE); fp_dbg("errors: %d rev: %d", err, rev_err); if (err < rev_err) { do_movement_estimation(ctx, stripes, num_stripes, FALSE); } } static inline void aes_blit_stripe(struct fpi_frame_asmbl_ctx *ctx, struct fp_img *img, struct fpi_frame *stripe, int x, int y) { unsigned int ix, iy; unsigned int fx, fy; unsigned int width, height; /* Find intersection */ if (x < 0) { width = ctx->frame_width + x; ix = 0; fx = -x; } else { ix = x; fx = 0; width = ctx->frame_width; } if ((ix + width) > img->width) width = img->width - ix; if (y < 0) { iy = 0; fy = -y; height = ctx->frame_height + y; } else { iy = y; fy = 0; height = ctx->frame_height; } if (fx > ctx->frame_width) return; if (fy > ctx->frame_height) return; if (ix > img->width) return; if (iy > img->height) return; if ((iy + height) > img->height) height = img->height - iy; for (; fy < height; fy++, iy++) { if (x < 0) { ix = 0; fx = -x; } else { ix = x; fx = 0; } for (; fx < width; fx++, ix++) { img->data[ix + (iy * img->width)] = ctx->get_pixel(ctx, stripe, fx, fy); } } } struct fp_img *fpi_assemble_frames(struct fpi_frame_asmbl_ctx *ctx, GSList *stripes, size_t stripes_len) { GSList *stripe; struct fp_img *img; int height = 0; int i, y, x; gboolean reverse = FALSE; struct fpi_frame *fpi_frame; BUG_ON(stripes_len == 0); BUG_ON(ctx->image_width < ctx->frame_width); /* Calculate height */ i = 0; stripe = stripes; /* No offset for 1st image */ fpi_frame = stripe->data; fpi_frame->delta_x = 0; fpi_frame->delta_y = 0; do { fpi_frame = stripe->data; height += fpi_frame->delta_y; i++; stripe = g_slist_next(stripe); } while (i < stripes_len); fp_dbg("height is %d", height); if (height < 0) { reverse = TRUE; height = -height; } /* For last frame */ height += ctx->frame_height; /* Create buffer big enough for max image */ img = fpi_img_new(ctx->image_width * height); img->flags = FP_IMG_COLORS_INVERTED; img->flags |= reverse ? 0 : FP_IMG_H_FLIPPED | FP_IMG_V_FLIPPED; img->width = ctx->image_width; img->height = height; /* Assemble stripes */ i = 0; stripe = stripes; y = reverse ? (height - ctx->frame_height) : 0; x = (ctx->image_width - ctx->frame_width) / 2; do { fpi_frame = stripe->data; if(reverse) { y += fpi_frame->delta_y; x += fpi_frame->delta_x; } aes_blit_stripe(ctx, img, fpi_frame, x, y); if(!reverse) { y += fpi_frame->delta_y; x += fpi_frame->delta_x; } stripe = g_slist_next(stripe); i++; } while (i < stripes_len); return img; } static int cmpint(const void *p1, const void *p2, gpointer data) { int a = *((int *)p1); int b = *((int *)p2); if (a < b) return -1; else if (a == b) return 0; else return 1; } static void median_filter(int *data, int size, int filtersize) { int i; int *result = (int *)g_malloc0(size*sizeof(int)); int *sortbuf = (int *)g_malloc0(filtersize*sizeof(int)); for (i = 0; i < size; i++) { int i1 = i - (filtersize-1)/2; int i2 = i + (filtersize-1)/2; if (i1 < 0) i1 = 0; if (i2 >= size) i2 = size-1; g_memmove(sortbuf, data+i1, (i2-i1+1)*sizeof(int)); g_qsort_with_data(sortbuf, i2-i1+1, sizeof(int), cmpint, NULL); result[i] = sortbuf[(i2-i1+1)/2]; } memmove(data, result, size*sizeof(int)); g_free(result); g_free(sortbuf); } static void interpolate_lines(struct fpi_line_asmbl_ctx *ctx, GSList *line1, float y1, GSList *line2, float y2, unsigned char *output, float yi, int size) { int i; unsigned char p1, p2; if (!line1 || !line2) return; for (i = 0; i < size; i++) { p1 = ctx->get_pixel(ctx, line1, i); p2 = ctx->get_pixel(ctx, line2, i); output[i] = (float)p1 + (yi - y1)/(y2 - y1)*(p2 - p1); } } /* Rescale image to account for variable swiping speed */ struct fp_img *fpi_assemble_lines(struct fpi_line_asmbl_ctx *ctx, GSList *lines, size_t lines_len) { /* Number of output lines per distance between two scanners */ int i; GSList *row1, *row2; float y = 0.0; int line_ind = 0; int *offsets = (int *)g_malloc0((lines_len / 2) * sizeof(int)); unsigned char *output = g_malloc0(ctx->line_width * ctx->max_height); struct fp_img *img; g_return_val_if_fail (lines != NULL, NULL); g_return_val_if_fail (lines_len > 0, NULL); fp_dbg("%"G_GINT64_FORMAT, g_get_real_time()); row1 = lines; for (i = 0; (i < lines_len - 1) && row1; i += 2) { int bestmatch = i; int bestdiff = 0; int j, firstrow, lastrow; firstrow = i + 1; lastrow = MIN(i + ctx->max_search_offset, lines_len - 1); row2 = g_slist_next(row1); for (j = firstrow; j <= lastrow; j++) { int diff = ctx->get_deviation(ctx, row1, row2); if ((j == firstrow) || (diff < bestdiff)) { bestdiff = diff; bestmatch = j; } row2 = g_slist_next(row2); } offsets[i / 2] = bestmatch - i; fp_dbg("%d", offsets[i / 2]); row1 = g_slist_next(row1); if (row1) row1 = g_slist_next(row1); } median_filter(offsets, (lines_len / 2) - 1, ctx->median_filter_size); fp_dbg("offsets_filtered: %"G_GINT64_FORMAT, g_get_real_time()); for (i = 0; i <= (lines_len / 2) - 1; i++) fp_dbg("%d", offsets[i]); row1 = lines; for (i = 0; i < lines_len - 1; i++, row1 = g_slist_next(row1)) { int offset = offsets[i/2]; if (offset > 0) { float ynext = y + (float)ctx->resolution / offset; while (line_ind < ynext) { if (line_ind > ctx->max_height - 1) goto out; interpolate_lines(ctx, row1, y, g_slist_next(row1), ynext, output + line_ind * ctx->line_width, line_ind, ctx->line_width); line_ind++; } y = ynext; } } out: img = fpi_img_new(ctx->line_width * line_ind); img->height = line_ind; img->width = ctx->line_width; img->flags = FP_IMG_V_FLIPPED; g_memmove(img->data, output, ctx->line_width * line_ind); g_free(offsets); g_free(output); return img; }