If FP_DEVICE_EMULATION is set, then switch to using predictable EC
ephemeral key and random numbers. This should allow recording and
replaying real device interactions using umockdev.
Some OEM will integrate fingerprint device with powerButton. It's
possible that a user may press the power button during fingerprint
enroll or identify. This would lead to unintended PC shutdown or
hibernation. We add pwr_btn_shield cmd and related process to shield
the power button function when the fingerprint functionality (enroll and
identify) is used and restore power button function afterwards.
We may want to be able to talk with the device while it's closed to
queue commands to be performed once it opens (could be even a script),
so to do this we need to close the device first, send those commands and
eventually process them.
We used a trick to send an invalid command before that was ignored by
release, but having the device available is just easier to handle.
So, when keep alive is enabled we don't stop the listener when closing
but only on actual device disposition.
The idea of the test was just checking what happens when we're opening a
device multiple times while a first request is still going.
However, it actually ends up also checking the previous commit change
because without it we'd stop the close iteration before the device is
actually closed and stop the open iteration before the device is
actually opened, leading to an infinite loop.
When opening the device we can process commands that we left for that
after the previous close, to do that we only have to inject an invalid
command that will be processed (and ignored) while closing, so that at
next device opening we will be able to proceed with the previously
sent commands.
Add tests to finally check this case!
Each command should be separated by SLEEP to be considered as something
we want to perform during the current operation, otherwise will be used
by next operation consuming it.
In case we sent a sleep event to the device we may want to wait it to
emit the finger needed state before the timeout is completed.
So add a function to manage this for all the scan cases
There are two variants one with storage and identify support and the
other without storage.
It implements the following commands:
* INSERT id
* REMOVE id
* SCAN id
* ERROR error-code
* LIST (returns saved print)
The INSERT/REMOVE/LIST commands are only available in the storage
driver. The SCAN command emulates presenting a finger.
These commands can be send ahead of time, and will be queued and
processed when appropriate. i.e. for INSERT/REMOVE that is immediately
when possible, for SCAN/ERROR processing is delayed.
The LIST command is always processed immediately.
Note that only a single command can be send per socket connection and
the command must be send in a single message. The socket will be closed
after the command has been processed.
Co-authored-by: Bastien Nocera <hadess@hadess.net>
Co-authored-by: Marco Trevisan (Treviño) <mail@3v1n0.net>
This solves various problems:
1. It stays the same also if some drivers have been disabled
2. It uses a stable path for being imported by systemd
3. It is still checked for its validity by tests
4. It can be auto-generated using a simple command
When building in big endian architectures some device tests will fail,
as per this we're pretty sure that most of the drivers are not ready
to work in big-endian architectures.
Since we're aware of this, better to just stop supporting those drivers
instead of having each distribution to handle the problem.
So, add a list of supported drivers that is filled depending the
architecture type we're building on. Keep continue building those
drivers since we want to at least test-build them, but do not expose
them as libfprint drivers, so if a device in the system uses any of them
will be ignored.
At the same time, we keep track of the problem, so that we can fix the
drivers.
Related to #236