fp-image-device: Move fpi code into its own unit that can be compiled a part

In order to be able to test the private device code (used by drivers) we
need to have that split a part in a different .c file so that we can compile
it alone and link with it both the shared library and the test executables.

Redefine fp_image_device_get_instance_private for private usage, not to move
the private struct as part of FpDevice.
This commit is contained in:
Marco Trevisan (Treviño) 2019-12-11 13:40:47 +01:00
parent d9de941a47
commit ae7021e529
4 changed files with 643 additions and 581 deletions

View file

@ -0,0 +1,43 @@
/*
* FpImageDevice - An image based fingerprint reader device
* Copyright (C) 2019 Benjamin Berg <bberg@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#pragma once
#include "fpi-image-device.h"
#define IMG_ENROLL_STAGES 5
typedef struct
{
FpImageDeviceState state;
gboolean active;
gboolean cancelling;
gboolean enroll_await_on_pending;
gint enroll_stage;
guint pending_activation_timeout_id;
gboolean pending_activation_timeout_waiting_finger_off;
gint bz3_threshold;
} FpImageDevicePrivate;
void fpi_image_device_activate (FpImageDevice *image_device);
void fpi_image_device_deactivate (FpImageDevice *image_device);

View file

@ -20,14 +20,9 @@
#define FP_COMPONENT "image_device"
#include "fpi-log.h"
#include "fpi-image-device.h"
#include "fpi-enums.h"
#include "fpi-print.h"
#include "fpi-image.h"
#include "fp-image-device-private.h"
#define MIN_ACCEPTABLE_MINUTIAE 10
#define BOZORTH3_DEFAULT_THRESHOLD 40
#define IMG_ENROLL_STAGES 5
/**
* SECTION: fp-image-device
@ -37,30 +32,6 @@
* This is a helper class for the commonly found image based devices.
*/
/**
* SECTION: fpi-image-device
* @title: Internal FpImageDevice
* @short_description: Internal image device routines
*
* See #FpImageDeviceClass for more details. Also see the public
* #FpImageDevice routines.
*/
typedef struct
{
FpImageDeviceState state;
gboolean active;
gboolean cancelling;
gboolean enroll_await_on_pending;
gint enroll_stage;
guint pending_activation_timeout_id;
gboolean pending_activation_timeout_waiting_finger_off;
gint bz3_threshold;
} FpImageDevicePrivate;
G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE (FpImageDevice, fp_image_device, FP_TYPE_DEVICE)
enum {
@ -87,70 +58,6 @@ static guint signals[LAST_SIGNAL] = { 0 };
/* Static helper functions */
static void
fp_image_device_change_state (FpImageDevice *self, FpImageDeviceState state)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
/* Cannot change to inactive using this function. */
g_assert (state != FP_IMAGE_DEVICE_STATE_INACTIVE);
/* We might have been waiting for the finger to go OFF to start the
* next operation. */
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
fp_dbg ("Image device internal state change from %d to %d\n", priv->state, state);
priv->state = state;
g_object_notify_by_pspec (G_OBJECT (self), properties[PROP_FPI_STATE]);
g_signal_emit (self, signals[FPI_STATE_CHANGED], 0, priv->state);
}
static void
fp_image_device_activate (FpImageDevice *self)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (self);
g_assert (!priv->active);
/* We don't have a neutral ACTIVE state, but we always will
* go into WAIT_FINGER_ON afterwards. */
priv->state = FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON;
g_object_notify_by_pspec (G_OBJECT (self), properties[PROP_FPI_STATE]);
/* We might have been waiting for deactivation to finish before
* starting the next operation. */
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
fp_dbg ("Activating image device\n");
cls->activate (self);
}
static void
fp_image_device_deactivate (FpDevice *device)
{
FpImageDevice *self = FP_IMAGE_DEVICE (device);
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (device);
if (!priv->active)
{
/* XXX: We currently deactivate both from minutiae scan result
* and finger off report. */
fp_dbg ("Already deactivated, ignoring request.");
return;
}
if (!priv->cancelling && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON)
g_warning ("Deactivating image device while waiting for finger, this should not happen.");
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify_by_pspec (G_OBJECT (self), properties[PROP_FPI_STATE]);
fp_dbg ("Deactivating image device\n");
cls->deactivate (self);
}
static gboolean
pending_activation_timeout (gpointer user_data)
{
@ -200,7 +107,7 @@ fp_image_device_close (FpDevice *device)
if (!priv->active)
cls->img_close (self);
else if (priv->state != FP_IMAGE_DEVICE_STATE_INACTIVE)
fp_image_device_deactivate (device);
fpi_image_device_deactivate (self);
}
static void
@ -220,7 +127,7 @@ fp_image_device_cancel_action (FpDevice *device)
action == FP_DEVICE_ACTION_CAPTURE)
{
priv->cancelling = TRUE;
fp_image_device_deactivate (FP_DEVICE (self));
fpi_image_device_deactivate (self);
priv->cancelling = FALSE;
/* XXX: Some nicer way of doing this would be good. */
@ -288,7 +195,7 @@ fp_image_device_start_capture_action (FpDevice *device)
/* And activate the device; we rely on fpi_image_device_activate_complete()
* to be called when done (or immediately). */
fp_image_device_activate (self);
fpi_image_device_activate (self);
}
@ -391,488 +298,4 @@ fp_image_device_init (FpImageDevice *self)
priv->bz3_threshold = BOZORTH3_DEFAULT_THRESHOLD;
if (cls->bz3_threshold > 0)
priv->bz3_threshold = cls->bz3_threshold;
}
static void
fp_image_device_enroll_maybe_await_finger_on (FpImageDevice *self)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
if (priv->enroll_await_on_pending)
{
priv->enroll_await_on_pending = FALSE;
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON);
}
else
{
priv->enroll_await_on_pending = TRUE;
}
}
static void
fpi_image_device_minutiae_detected (GObject *source_object, GAsyncResult *res, gpointer user_data)
{
g_autoptr(FpImage) image = FP_IMAGE (source_object);
g_autoptr(FpPrint) print = NULL;
GError *error = NULL;
FpDevice *device = FP_DEVICE (user_data);
FpImageDevicePrivate *priv;
FpDeviceAction action;
/* Note: We rely on the device to not disappear during an operation. */
if (!fp_image_detect_minutiae_finish (image, res, &error))
{
/* Cancel operation . */
if (g_error_matches (error, G_IO_ERROR, G_IO_ERROR_CANCELLED))
{
fpi_device_action_error (device, g_steal_pointer (&error));
fp_image_device_deactivate (device);
return;
}
/* Replace error with a retry condition. */
g_warning ("Failed to detect minutiae: %s", error->message);
g_clear_pointer (&error, g_error_free);
error = fpi_device_retry_new_msg (FP_DEVICE_RETRY_GENERAL, "Minutiae detection failed, please retry");
}
priv = fp_image_device_get_instance_private (FP_IMAGE_DEVICE (device));
action = fpi_device_get_current_action (device);
if (action == FP_DEVICE_ACTION_CAPTURE)
{
fpi_device_capture_complete (device, g_steal_pointer (&image), error);
fp_image_device_deactivate (device);
return;
}
if (!error)
{
print = fp_print_new (device);
fpi_print_set_type (print, FP_PRINT_NBIS);
if (!fpi_print_add_from_image (print, image, &error))
g_clear_object (&print);
}
if (action == FP_DEVICE_ACTION_ENROLL)
{
FpPrint *enroll_print;
fpi_device_get_enroll_data (device, &enroll_print);
if (print)
{
fpi_print_add_print (enroll_print, print);
priv->enroll_stage += 1;
}
fpi_device_enroll_progress (device, priv->enroll_stage,
g_steal_pointer (&print), error);
/* Start another scan or deactivate. */
if (priv->enroll_stage == IMG_ENROLL_STAGES)
{
fpi_device_enroll_complete (device, g_object_ref (enroll_print), NULL);
fp_image_device_deactivate (device);
}
else
{
fp_image_device_enroll_maybe_await_finger_on (FP_IMAGE_DEVICE (device));
}
}
else if (action == FP_DEVICE_ACTION_VERIFY)
{
FpPrint *template;
FpiMatchResult result;
fpi_device_get_verify_data (device, &template);
if (print)
result = fpi_print_bz3_match (template, print, priv->bz3_threshold, &error);
else
result = FPI_MATCH_ERROR;
fpi_device_verify_complete (device, result, g_steal_pointer (&print), error);
fp_image_device_deactivate (device);
}
else if (action == FP_DEVICE_ACTION_IDENTIFY)
{
gint i;
GPtrArray *templates;
FpPrint *result = NULL;
fpi_device_get_identify_data (device, &templates);
for (i = 0; !error && i < templates->len; i++)
{
FpPrint *template = g_ptr_array_index (templates, i);
if (fpi_print_bz3_match (template, print, priv->bz3_threshold, &error) == FPI_MATCH_SUCCESS)
{
result = g_object_ref (template);
break;
}
}
fpi_device_identify_complete (device, result, g_steal_pointer (&print), error);
fp_image_device_deactivate (device);
}
else
{
/* XXX: This can be hit currently due to a race condition in the enroll code!
* In that case we scan a further image even though the minutiae for the previous
* one have not yet been detected.
* We need to keep track on the pending minutiae detection and the fact that
* it will finish eventually (or we may need to retry on error and activate the
* device again). */
g_assert_not_reached ();
}
}
/*********************************************************/
/* Private API */
/**
* fpi_image_device_set_bz3_threshold:
* @self: a #FpImageDevice imaging fingerprint device
* @bz3_threshold: BZ3 threshold to use
*
* Dynamically adjust the bz3 threshold. This is only needed for drivers
* that support devices with different properties. It should generally be
* called from the probe callback, but is acceptable to call from the open
* callback.
*/
void
fpi_image_device_set_bz3_threshold (FpImageDevice *self,
gint bz3_threshold)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
g_return_if_fail (FP_IS_IMAGE_DEVICE (self));
g_return_if_fail (bz3_threshold > 0);
priv->bz3_threshold = bz3_threshold;
}
/**
* fpi_image_device_report_finger_status:
* @self: a #FpImageDevice imaging fingerprint device
* @present: whether the finger is present on the sensor
*
* Reports from the driver whether the user's finger is on
* the sensor.
*/
void
fpi_image_device_report_finger_status (FpImageDevice *self,
gboolean present)
{
FpDevice *device = FP_DEVICE (self);
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
if (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE)
{
/* Do we really want to always ignore such reports? We could
* also track the state in case the user had the finger on
* the device at initialisation time and the driver reports
* this early.
*/
g_debug ("Ignoring finger presence report as the device is not active!");
return;
}
action = fpi_device_get_current_action (device);
g_assert (action != FP_DEVICE_ACTION_OPEN);
g_assert (action != FP_DEVICE_ACTION_CLOSE);
g_debug ("Image device reported finger status: %s", present ? "on" : "off");
if (present && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON)
{
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_CAPTURE);
}
else if (!present && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_OFF)
{
/* We need to deactivate or continue to await finger */
/* There are three possible situations:
* 1. We are deactivating the device and the action is still in progress
* (minutiae detection).
* 2. We are still deactivating the device after an action completed
* 3. We were waiting for finger removal to start the new action
* Either way, we always end up deactivating except for the enroll case.
*
* The enroll case is special as AWAIT_FINGER_ON should only happen after
* minutiae detection to prevent deactivation (without cancellation)
* from the AWAIT_FINGER_ON state.
*/
if (action != FP_DEVICE_ACTION_ENROLL)
fp_image_device_deactivate (device);
else
fp_image_device_enroll_maybe_await_finger_on (self);
}
}
/**
* fpi_image_device_image_captured:
* @self: a #FpImageDevice imaging fingerprint device
* @image: whether the finger is present on the sensor
*
* Reports an image capture. Only use this function if the image was
* captured successfully. If there was an issue where the user should
* retry, use fpi_image_device_retry_scan() to report the retry condition.
*
* In the event of a fatal error for the operation use
* fpi_image_device_session_error(). This will abort the entire operation
* including e.g. an enroll operation which captures multiple images during
* one session.
*/
void
fpi_image_device_image_captured (FpImageDevice *self, FpImage *image)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (image != NULL);
g_return_if_fail (priv->state == FP_IMAGE_DEVICE_STATE_CAPTURE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_OFF);
g_debug ("Image device captured an image");
/* XXX: We also detect minutiae in capture mode, we solely do this
* to normalize the image which will happen as a by-product. */
fp_image_detect_minutiae (image,
fpi_device_get_cancellable (FP_DEVICE (self)),
fpi_image_device_minutiae_detected,
self);
}
/**
* fpi_image_device_retry_scan:
* @self: a #FpImageDevice imaging fingerprint device
* @retry: The #FpDeviceRetry error code to report
*
* Reports a scan failure to the user. This may or may not abort the
* current session. It is the equivalent of fpi_image_device_image_captured()
* in the case of a retryable error condition (e.g. short swipe).
*/
void
fpi_image_device_retry_scan (FpImageDevice *self, FpDeviceRetry retry)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
GError *error;
action = fpi_device_get_current_action (FP_DEVICE (self));
/* We might be waiting for a finger at this point, so just accept
* all but INACTIVE */
g_return_if_fail (priv->state != FP_IMAGE_DEVICE_STATE_INACTIVE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
error = fpi_device_retry_new (retry);
if (action == FP_DEVICE_ACTION_ENROLL)
{
g_debug ("Reporting retry during enroll");
fpi_device_enroll_progress (FP_DEVICE (self), priv->enroll_stage, NULL, error);
}
else
{
/* We abort the operation and let the surrounding code retry in the
* non-enroll case (this is identical to a session error). */
g_debug ("Abort current operation due to retry (non-enroll case)");
fp_image_device_deactivate (FP_DEVICE (self));
fpi_device_action_error (FP_DEVICE (self), error);
}
}
/**
* fpi_image_device_session_error:
* @self: a #FpImageDevice imaging fingerprint device
* @error: The #GError to report
*
* Report an error while interacting with the device. This effectively
* aborts the current ongoing action.
*/
void
fpi_image_device_session_error (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
g_return_if_fail (self);
if (!error)
{
g_warning ("Driver did not provide an error, generating a generic one");
error = g_error_new (FP_DEVICE_ERROR, FP_DEVICE_ERROR_GENERAL, "Driver reported session error without an error");
}
if (!priv->active)
{
FpDeviceAction action = fpi_device_get_current_action (FP_DEVICE (self));
g_warning ("Driver reported session error, but device is inactive.");
if (action != FP_DEVICE_ACTION_NONE)
{
g_warning ("Translating to activation failure!");
fpi_image_device_activate_complete (self, error);
return;
}
}
else if (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE)
{
g_warning ("Driver reported session error; translating to deactivation failure.");
fpi_image_device_deactivate_complete (self, error);
return;
}
if (error->domain == FP_DEVICE_RETRY)
g_warning ("Driver should report retries using fpi_image_device_retry_scan!");
fp_image_device_deactivate (FP_DEVICE (self));
fpi_device_action_error (FP_DEVICE (self), error);
}
/**
* fpi_image_device_activate_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of device activation.
*/
void
fpi_image_device_activate_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
if (error)
{
g_debug ("Image device activation failed");
fpi_device_action_error (FP_DEVICE (self), error);
return;
}
g_debug ("Image device activation completed");
priv->active = TRUE;
/* We always want to capture at this point, move to AWAIT_FINGER
* state. */
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON);
}
/**
* fpi_image_device_deactivate_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of device deactivation.
*/
void
fpi_image_device_deactivate_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (self);
FpDeviceAction action;
g_return_if_fail (priv->active == TRUE);
g_return_if_fail (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE);
g_debug ("Image device deactivation completed");
priv->active = FALSE;
/* Deactivation completed. As we deactivate in the background
* there may already be a new task pending. Check whether we
* need to do anything. */
action = fpi_device_get_current_action (FP_DEVICE (self));
/* Special case, if we should be closing, but didn't due to a running
* deactivation, then do so now. */
if (action == FP_DEVICE_ACTION_CLOSE)
{
cls->img_close (self);
return;
}
/* We might be waiting to be able to activate again. */
if (priv->pending_activation_timeout_id)
{
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
priv->pending_activation_timeout_id =
g_idle_add ((GSourceFunc) fp_image_device_activate, self);
}
}
/**
* fpi_image_device_open_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of open operation.
*/
void
fpi_image_device_open_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_OPEN);
g_debug ("Image device open completed");
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify_by_pspec (G_OBJECT (self), properties[PROP_FPI_STATE]);
fpi_device_open_complete (FP_DEVICE (self), error);
}
/**
* fpi_image_device_close_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of close operation.
*/
void
fpi_image_device_close_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_debug ("Image device close completed");
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_CLOSE);
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify_by_pspec (G_OBJECT (self), properties[PROP_FPI_STATE]);
fpi_device_close_complete (FP_DEVICE (self), error);
}

View file

@ -0,0 +1,595 @@
/*
* FpImageDevice - An image based fingerprint reader device - Private APIs
* Copyright (C) 2019 Benjamin Berg <bberg@redhat.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define FP_COMPONENT "image_device"
#include "fpi-log.h"
#include "fp-image-device-private.h"
#include "fp-image-device.h"
/**
* SECTION: fpi-image
* @title: Internal FpImage
* @short_description: Internal image handling routines
*
* Internal image handling routines. Also see the public <ulink
* url="libfprint-FpImage.html">FpImage routines</ulink>.
*/
/* Manually redefine what G_DEFINE_* macro does */
static inline gpointer
fp_image_device_get_instance_private (FpImageDevice *self)
{
FpImageDeviceClass *img_class = g_type_class_peek_static (FP_TYPE_IMAGE_DEVICE);
return G_STRUCT_MEMBER_P (self,
g_type_class_get_instance_private_offset (img_class));
}
/* Private shared functions */
void
fpi_image_device_activate (FpImageDevice *self)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (self);
g_assert (!priv->active);
/* We don't have a neutral ACTIVE state, but we always will
* go into WAIT_FINGER_ON afterwards. */
priv->state = FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON;
g_object_notify (G_OBJECT (self), "fp-image-device-state");
/* We might have been waiting for deactivation to finish before
* starting the next operation. */
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
fp_dbg ("Activating image device\n");
cls->activate (self);
}
void
fpi_image_device_deactivate (FpImageDevice *self)
{
FpDevice *device = FP_DEVICE (self);
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (device);
if (!priv->active)
{
/* XXX: We currently deactivate both from minutiae scan result
* and finger off report. */
fp_dbg ("Already deactivated, ignoring request.");
return;
}
if (!priv->cancelling && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON)
g_warning ("Deactivating image device while waiting for finger, this should not happen.");
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify (G_OBJECT (self), "fp-image-device-state");
fp_dbg ("Deactivating image device\n");
cls->deactivate (self);
}
/* Static helper functions */
static void
fp_image_device_change_state (FpImageDevice *self, FpImageDeviceState state)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
/* Cannot change to inactive using this function. */
g_assert (state != FP_IMAGE_DEVICE_STATE_INACTIVE);
/* We might have been waiting for the finger to go OFF to start the
* next operation. */
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
fp_dbg ("Image device internal state change from %d to %d\n", priv->state, state);
priv->state = state;
g_object_notify (G_OBJECT (self), "fp-image-device-state");
g_signal_emit_by_name (self, "fp-image-device-state-changed", priv->state);
}
static void
fp_image_device_enroll_maybe_await_finger_on (FpImageDevice *self)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
if (priv->enroll_await_on_pending)
{
priv->enroll_await_on_pending = FALSE;
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON);
}
else
{
priv->enroll_await_on_pending = TRUE;
}
}
static void
fpi_image_device_minutiae_detected (GObject *source_object, GAsyncResult *res, gpointer user_data)
{
g_autoptr(FpImage) image = FP_IMAGE (source_object);
g_autoptr(FpPrint) print = NULL;
GError *error = NULL;
FpImageDevice *self = FP_IMAGE_DEVICE (user_data);
FpDevice *device = FP_DEVICE (self);
FpImageDevicePrivate *priv;
FpDeviceAction action;
/* Note: We rely on the device to not disappear during an operation. */
if (!fp_image_detect_minutiae_finish (image, res, &error))
{
/* Cancel operation . */
if (g_error_matches (error, G_IO_ERROR, G_IO_ERROR_CANCELLED))
{
fpi_device_action_error (device, g_steal_pointer (&error));
fpi_image_device_deactivate (self);
return;
}
/* Replace error with a retry condition. */
g_warning ("Failed to detect minutiae: %s", error->message);
g_clear_pointer (&error, g_error_free);
error = fpi_device_retry_new_msg (FP_DEVICE_RETRY_GENERAL, "Minutiae detection failed, please retry");
}
priv = fp_image_device_get_instance_private (FP_IMAGE_DEVICE (device));
action = fpi_device_get_current_action (device);
if (action == FP_DEVICE_ACTION_CAPTURE)
{
fpi_device_capture_complete (device, g_steal_pointer (&image), error);
fpi_image_device_deactivate (self);
return;
}
if (!error)
{
print = fp_print_new (device);
fpi_print_set_type (print, FP_PRINT_NBIS);
if (!fpi_print_add_from_image (print, image, &error))
g_clear_object (&print);
}
if (action == FP_DEVICE_ACTION_ENROLL)
{
FpPrint *enroll_print;
fpi_device_get_enroll_data (device, &enroll_print);
if (print)
{
fpi_print_add_print (enroll_print, print);
priv->enroll_stage += 1;
}
fpi_device_enroll_progress (device, priv->enroll_stage,
g_steal_pointer (&print), error);
/* Start another scan or deactivate. */
if (priv->enroll_stage == IMG_ENROLL_STAGES)
{
fpi_device_enroll_complete (device, g_object_ref (enroll_print), NULL);
fpi_image_device_deactivate (self);
}
else
{
fp_image_device_enroll_maybe_await_finger_on (FP_IMAGE_DEVICE (device));
}
}
else if (action == FP_DEVICE_ACTION_VERIFY)
{
FpPrint *template;
FpiMatchResult result;
fpi_device_get_verify_data (device, &template);
if (print)
result = fpi_print_bz3_match (template, print, priv->bz3_threshold, &error);
else
result = FPI_MATCH_ERROR;
fpi_device_verify_complete (device, result, g_steal_pointer (&print), error);
fpi_image_device_deactivate (self);
}
else if (action == FP_DEVICE_ACTION_IDENTIFY)
{
gint i;
GPtrArray *templates;
FpPrint *result = NULL;
fpi_device_get_identify_data (device, &templates);
for (i = 0; !error && i < templates->len; i++)
{
FpPrint *template = g_ptr_array_index (templates, i);
if (fpi_print_bz3_match (template, print, priv->bz3_threshold, &error) == FPI_MATCH_SUCCESS)
{
result = g_object_ref (template);
break;
}
}
fpi_device_identify_complete (device, result, g_steal_pointer (&print), error);
fpi_image_device_deactivate (self);
}
else
{
/* XXX: This can be hit currently due to a race condition in the enroll code!
* In that case we scan a further image even though the minutiae for the previous
* one have not yet been detected.
* We need to keep track on the pending minutiae detection and the fact that
* it will finish eventually (or we may need to retry on error and activate the
* device again). */
g_assert_not_reached ();
}
}
/*********************************************************/
/* Private API */
/**
* fpi_image_device_set_bz3_threshold:
* @self: a #FpImageDevice imaging fingerprint device
* @bz3_threshold: BZ3 threshold to use
*
* Dynamically adjust the bz3 threshold. This is only needed for drivers
* that support devices with different properties. It should generally be
* called from the probe callback, but is acceptable to call from the open
* callback.
*/
void
fpi_image_device_set_bz3_threshold (FpImageDevice *self,
gint bz3_threshold)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
g_return_if_fail (FP_IS_IMAGE_DEVICE (self));
g_return_if_fail (bz3_threshold > 0);
priv->bz3_threshold = bz3_threshold;
}
/**
* fpi_image_device_report_finger_status:
* @self: a #FpImageDevice imaging fingerprint device
* @present: whether the finger is present on the sensor
*
* Reports from the driver whether the user's finger is on
* the sensor.
*/
void
fpi_image_device_report_finger_status (FpImageDevice *self,
gboolean present)
{
FpDevice *device = FP_DEVICE (self);
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
if (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE)
{
/* Do we really want to always ignore such reports? We could
* also track the state in case the user had the finger on
* the device at initialisation time and the driver reports
* this early.
*/
g_debug ("Ignoring finger presence report as the device is not active!");
return;
}
action = fpi_device_get_current_action (device);
g_assert (action != FP_DEVICE_ACTION_OPEN);
g_assert (action != FP_DEVICE_ACTION_CLOSE);
g_debug ("Image device reported finger status: %s", present ? "on" : "off");
if (present && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON)
{
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_CAPTURE);
}
else if (!present && priv->state == FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_OFF)
{
/* We need to deactivate or continue to await finger */
/* There are three possible situations:
* 1. We are deactivating the device and the action is still in progress
* (minutiae detection).
* 2. We are still deactivating the device after an action completed
* 3. We were waiting for finger removal to start the new action
* Either way, we always end up deactivating except for the enroll case.
*
* The enroll case is special as AWAIT_FINGER_ON should only happen after
* minutiae detection to prevent deactivation (without cancellation)
* from the AWAIT_FINGER_ON state.
*/
if (action != FP_DEVICE_ACTION_ENROLL)
fpi_image_device_deactivate (self);
else
fp_image_device_enroll_maybe_await_finger_on (self);
}
}
/**
* fpi_image_device_image_captured:
* @self: a #FpImageDevice imaging fingerprint device
* @image: whether the finger is present on the sensor
*
* Reports an image capture. Only use this function if the image was
* captured successfully. If there was an issue where the user should
* retry, use fpi_image_device_retry_scan() to report the retry condition.
*
* In the event of a fatal error for the operation use
* fpi_image_device_session_error(). This will abort the entire operation
* including e.g. an enroll operation which captures multiple images during
* one session.
*/
void
fpi_image_device_image_captured (FpImageDevice *self, FpImage *image)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (image != NULL);
g_return_if_fail (priv->state == FP_IMAGE_DEVICE_STATE_CAPTURE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_OFF);
g_debug ("Image device captured an image");
/* XXX: We also detect minutiae in capture mode, we solely do this
* to normalize the image which will happen as a by-product. */
fp_image_detect_minutiae (image,
fpi_device_get_cancellable (FP_DEVICE (self)),
fpi_image_device_minutiae_detected,
self);
}
/**
* fpi_image_device_retry_scan:
* @self: a #FpImageDevice imaging fingerprint device
* @retry: The #FpDeviceRetry error code to report
*
* Reports a scan failure to the user. This may or may not abort the
* current session. It is the equivalent of fpi_image_device_image_captured()
* in the case of a retryable error condition (e.g. short swipe).
*/
void
fpi_image_device_retry_scan (FpImageDevice *self, FpDeviceRetry retry)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
GError *error;
action = fpi_device_get_current_action (FP_DEVICE (self));
/* We might be waiting for a finger at this point, so just accept
* all but INACTIVE */
g_return_if_fail (priv->state != FP_IMAGE_DEVICE_STATE_INACTIVE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
error = fpi_device_retry_new (retry);
if (action == FP_DEVICE_ACTION_ENROLL)
{
g_debug ("Reporting retry during enroll");
fpi_device_enroll_progress (FP_DEVICE (self), priv->enroll_stage, NULL, error);
}
else
{
/* We abort the operation and let the surrounding code retry in the
* non-enroll case (this is identical to a session error). */
g_debug ("Abort current operation due to retry (non-enroll case)");
fpi_image_device_deactivate (self);
fpi_device_action_error (FP_DEVICE (self), error);
}
}
/**
* fpi_image_device_session_error:
* @self: a #FpImageDevice imaging fingerprint device
* @error: The #GError to report
*
* Report an error while interacting with the device. This effectively
* aborts the current ongoing action.
*/
void
fpi_image_device_session_error (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
g_return_if_fail (self);
if (!error)
{
g_warning ("Driver did not provide an error, generating a generic one");
error = g_error_new (FP_DEVICE_ERROR, FP_DEVICE_ERROR_GENERAL, "Driver reported session error without an error");
}
if (!priv->active)
{
FpDeviceAction action = fpi_device_get_current_action (FP_DEVICE (self));
g_warning ("Driver reported session error, but device is inactive.");
if (action != FP_DEVICE_ACTION_NONE)
{
g_warning ("Translating to activation failure!");
fpi_image_device_activate_complete (self, error);
return;
}
}
else if (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE)
{
g_warning ("Driver reported session error; translating to deactivation failure.");
fpi_image_device_deactivate_complete (self, error);
return;
}
if (error->domain == FP_DEVICE_RETRY)
g_warning ("Driver should report retries using fpi_image_device_retry_scan!");
fpi_image_device_deactivate (self);
fpi_device_action_error (FP_DEVICE (self), error);
}
/**
* fpi_image_device_activate_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of device activation.
*/
void
fpi_image_device_activate_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_ENROLL ||
action == FP_DEVICE_ACTION_VERIFY ||
action == FP_DEVICE_ACTION_IDENTIFY ||
action == FP_DEVICE_ACTION_CAPTURE);
if (error)
{
g_debug ("Image device activation failed");
fpi_device_action_error (FP_DEVICE (self), error);
return;
}
g_debug ("Image device activation completed");
priv->active = TRUE;
/* We always want to capture at this point, move to AWAIT_FINGER
* state. */
fp_image_device_change_state (self, FP_IMAGE_DEVICE_STATE_AWAIT_FINGER_ON);
}
/**
* fpi_image_device_deactivate_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of device deactivation.
*/
void
fpi_image_device_deactivate_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpImageDeviceClass *cls = FP_IMAGE_DEVICE_GET_CLASS (self);
FpDeviceAction action;
g_return_if_fail (priv->active == TRUE);
g_return_if_fail (priv->state == FP_IMAGE_DEVICE_STATE_INACTIVE);
g_debug ("Image device deactivation completed");
priv->active = FALSE;
/* Deactivation completed. As we deactivate in the background
* there may already be a new task pending. Check whether we
* need to do anything. */
action = fpi_device_get_current_action (FP_DEVICE (self));
/* Special case, if we should be closing, but didn't due to a running
* deactivation, then do so now. */
if (action == FP_DEVICE_ACTION_CLOSE)
{
cls->img_close (self);
return;
}
/* We might be waiting to be able to activate again. */
if (priv->pending_activation_timeout_id)
{
g_clear_handle_id (&priv->pending_activation_timeout_id, g_source_remove);
priv->pending_activation_timeout_id =
g_idle_add ((GSourceFunc) fpi_image_device_activate, self);
}
}
/**
* fpi_image_device_open_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of open operation.
*/
void
fpi_image_device_open_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_OPEN);
g_debug ("Image device open completed");
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify (G_OBJECT (self), "fp-image-device-state");
fpi_device_open_complete (FP_DEVICE (self), error);
}
/**
* fpi_image_device_close_complete:
* @self: a #FpImageDevice imaging fingerprint device
* @error: A #GError or %NULL on success
*
* Reports completion of close operation.
*/
void
fpi_image_device_close_complete (FpImageDevice *self, GError *error)
{
FpImageDevicePrivate *priv = fp_image_device_get_instance_private (self);
FpDeviceAction action;
action = fpi_device_get_current_action (FP_DEVICE (self));
g_debug ("Image device close completed");
g_return_if_fail (priv->active == FALSE);
g_return_if_fail (action == FP_DEVICE_ACTION_CLOSE);
priv->state = FP_IMAGE_DEVICE_STATE_INACTIVE;
g_object_notify (G_OBJECT (self), "fp-image-device-state");
fpi_device_close_complete (FP_DEVICE (self), error);
}

View file

@ -9,6 +9,7 @@ libfprint_sources = [
libfprint_private_sources = [
'fpi-assembling.c',
'fpi-device.c',
'fpi-image-device.c',
'fpi-ssm.c',
'fpi-usb-transfer.c',
'fpi-byte-reader.c',